
^v:"-'1! 

AD-A013 681 

NONDESTRUCTIVE VIBRATORY TESTING OF AIRPORT PAVEMENTS. 
VOLUME II:  THEORETICAL STUDY OF THE DYNAMIC STIFFNESS 
AND ITS APPLICATION TO THE VIBRATORY NONDESTRUCTIVE 
METHOD OF TESTING PAVEMENTS 

Richard A. Weiss 

Army Engineer Waterways Experiment Station 

Prepared for: 

Federal Aviation Administration 

April 1975 

DISTRIBUTED BY: 

mi\ 
National Technical Information Service 
U. S. DEPARTMENT OF COMMERCE 



~"\. 

239081 

liport Hi. FMM-73-205n 

00 

CO 

o 

NONDESTRUCTIVE VIBRATORY TESTING 
OF AIRPORT PAVEMENTS 

VOLUME I 

Theoretical Study of tne Dynamic Stiffness and 
Its Application to the Vihratory Nondestructive 

Method of Testing Pavements 

Richard A. Weiss 

U. S. Army Engineer Waterways Experiment Station 

Soils and Pavements Laboratory 

Vicksburg, Miss.    39180 

X 

APRIL 1975 
FINAL REPORT 

DOC 

B  - 

Document is available to the public through the National 
Technical Information Service, Springfield, Va.    22151. 

Prepared for 
r 

U.S. DEPARTMENT OF TRANSPORTATION 
FEDERAL AVIATION ADMNISTRATION 

Systems Research & Development Service 
Washington, D.C. 20590 R«produc«d by 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

US Dipiitminl ol Conm.rci 
SpringMd, VA. 32151 

vi;--i ,'.■'■;■■••''•-■-*■■" 



NOTICES 

This document is disseminated under the sponsorship of the Department 
of Transportation in the interest of information exchange.    The United 
States Government assumes no liability for its contents or use thereof. 

The United States Government does not endorse products or manufacturers. 
Trade or manufacturers' names appear herein solely because they are con- 
sidered essential to the object of this report. 

C,;i.        v,,lL d;;J. * SPtCIÄT 

A 

\ 



**=<«* 

Technical k«p*rt Decumtnlttien Pag« 

1.   Rtf^Oft No. 

FAA-RD-73-205-II 

2     Cov*fnm#nt Acrrtlion No. 

4.   Till» ««4 Subiiil» 

NONDESTRUCTIVE VIBRATORY TESTING OF AIRPORT PAVEMENTS 
VOLUME II:    THEORETICAL STUDY OF THE DYNAMIC STIFFNESS 
AND ITS APPLICATION TO THE VIBRATORY NONDESTRUCTIVE 
METHOD OF TESTING PAVEMENTS 
'.   Au<ko''t) 

Richard A. Weiss 
9.    PorforfTong Orgonitdtion Nomo and Addrot» 

U.  S. Array Engineer Waterways Experiment Station 
Soils and Pavements Laboratory, P.  0, Box 631 
Vicksburg, Miss.     39180 

12.   Sfontotint *(*nty Nam* and Add'Ot» 

Department of Transportation 
Federal Aviation Administration 
Systems Research and Development Service 
Washington, D. C. 20591 

3    Kocipiant't Catalog No 

S.   Rapoit Oa'a 

April 1975 
6.   Pvrlvrming Örfantiotion Cedt 

8.   Ptrf^mmf Offtnitotion Rflporf No 

Technical Report S-75- 
Volume II 

10     Work Umt No. (TRAISJ 

11     Contract Of Grant No. 

FA71-WAI-218 

13.   Typa of Rapefi and Period Co«arad 

Final report 

14.   Sponsoring Afancy Coda 

IS.   Supplaatantafy Natat 

U.   Abtiraet 

A theoretical and experimental study of the dynamic load-deflection curves of pave- 
ments was conducted to determine the dependence of the measured dynamic stiffness 
values of a pavement on the type of vibrator that Is used to make the measurements, 
and to correlate dynamic stiffness measurements obtained from different vibrators 
at the same pavement location.    Experimental tests were conducted to verify the 
theoretical results.    The dynamic load-deflection curves of pavements are found to 
be nonlinear, and a nonlinear vibration theory of pavements is developed to de- 
scribe these curves.    This study gives a method of determining the shear modulus 
and thickness of each pavement layer directly from the measured values of dynamic 
stiffness for a series of vibrator baseplate sizes.    This method may be of prac- 
tical value for nondestructlvely determining the subsurface structure of a pavement. 
Volume I, "Experimental Test Results and Development of Evaluation 
Methodology and Procedure" is being prepared and will be released soon. 

PRICES SUBJECT TO CHANGE 
17.   Kay Ward» 
Airfield pavements 
Load distribution 
Nondestructive tests 
Pavements 
Vibration tests 
If.   Sacurify Claiiil. (•> tfiii rapw») 

Unclassified 

IS.   Di,it.bv»io» Stoiafflon« 

Document is available to the public 
through the National Technical Informa- 
tion Service, Springfield, Va. 22151 

20.   Sacuftty Clotiif. (of thit paga) 

Unclassified 

21. No. ol Pagai 

/// 

22.   Pnea 

Farm DOT F 1700.7 (8-72) Rapreduclien of complttad pag* aulherixad 

* 
/ 



PREFACE 

•   This study was conducted during the period April 1972-October 

197h by personnel of the U.  S. Amy Engineer Waterways Experiment 

Station (WES).     It was sponsored by the Federal Aviation Administration 

through part of Inter-Agency Agreement FA71-WAI-218, "Development of 

Airport Pavement Criteria." 

The study was done under the general supervision of Messrs. J. P. 

Sale and R. G. Ahlvin, Chief and Assistant Chief, respectively, of the 

Soils and Pavements Laboratory, Mr. R. L. Hutchlnson, Special Assistant 

to the Soils and Pavements Laboratory, and Mr.  H.  H. Ulery, Jr., Chief, 

Pavement Design Division, and under the direct supervision of 

Messrs. A. H. Joseph and J. W.  Hall, Jr., Chiefs, respectively, of 

the Pavement Investigations Division and the Evaluation Branch.    The 

programming for this study was done in part by Mr.  A. P.  Park, Soils 

Testing Branch.    Significant contributions were made by Mr. J.  L. Green, 

Evaluation Branch.    This report was written by Dr.  R. A. Weiss. 

BG E. D. Pelxotto and COL G.  H. Hilt were Directors of WES during 

the conduct of this study and the preparation of this report.     The 

Technical Director was Mr.   F.  R.   Brown. 

• ftr'i'tfnW^irii-" M ■      .■■■ ■■>-,■_•-.■'.((CiEkuiA" 



■"1 

TABLE OF CONTENTS 

1. INTRODUCTION  13 

1.1 BACKGROUND  13 
1.2 OBJECTIVES  13 
1.3 SCOPE  Ik 

2. LINEAR OSCILLATOR MODEL OF PAVEMENT RESPONSE  l6 

2.1 GENERAL CONSIDERATIONS  16 
2.2 HOMOGENEOUS LINEAR ELASTIC HALF-SPACE  16 
2.3 DYNAMIC LOAD-DEFLECTION CURVES  17 
2.1»    DYNAMIC STIFFNESS  18 

3. THE NONLINEAR MECHANICAL MODEL  21 

3.1 INTRODUCTION TO THE NONLINEAR MODEL  21 
3.2 NONLINEAR PAVEMENT-RESTORING FORCE  22 
3.3 EQUATION OF MOTION FOR THE NONLINEAR SYSTEM  23 
3.1*    EFFECTIVE SPRING CONSTANT  2k 
3.5 CALCULATION OF THE DYNAMIC STIFFNESS AND THE DEFLECTION 

AMPLITUDE FOR NONLINEAR PAVEMENTS  26 
3.6 PHYSICAL ORIGIN OF THE NONLINEAR PAVEMENT PARAMETERS   ... 38 
3.7 CALCULATION OF THE NONLINEAR PARAMETERS  1*9 
3.8 EFFECTS OF THE MECHANICAL CHARACTERISTICS OF THE VIBRATOR 

ON THE MEASURED VALUES OF DYNAMIC STIFFNESS  66 

U.     EVALUATION OF THEORETICAL RESULTS OF THE DYNAMIC STIFFNESS 
STUDY          70 

k.l    EXPERIMENTAL PROGRAM  70 
k.2    COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS FOR 

THE DYNAMIC STIFFNESS  91 

5.     SUMMARY,  CONCLUSIONS,  AND RECOMMENDATIONS  101+ 

5.1    SUMMARY  IQi* 
5;2 CONCLUSIONS  101+ 
5.3 RECOMMENDATIONS  106 

REFERENCES  108 

Preceding page blank 



LIST OF ILLUSTRATIONS 

Figure    Title    Page 

1 Typical dynamic response of the linear spring model  ....    19 

2 Theoretical dynamic load-deflection curves and dynamic 
stifftiess curves predicted by the nonlinear spring model    .    33 

3 Theoretical static load-deflection curves predicted by 
the nonlinear spring model 36 

1*        Theoretical dependence of the effective static spring 
constant on the static load 38 

5 Frustum of cone in which stress and strain in the pavement 
are assumed to be confined i*3 

6 Layered model of pavement 1+7 

7 Theoretical dependence of the spring constant,    k-    ,  on 
the radius of the vibrator baseplate 59 

8 Theoretical dependence of the third-order nonlinear param- 
eter,   b , on the radius of the vibrator baseplate    ....    60 

9 Theoretical dependence of the fifth-order nonlinear param- 
eter,    e , on the radius of the vibrator baseplate    ....    6l 

10 Theoretical dependence of the dynamic stiffness,    S  , on 
the radius of the vibrator baseplate 62 

11 Dynamic load-deflection curves for different locations on 
AC pavements shoving strong pavements to be more linear 
than weak pavements 73 

12 Dy.iamic load-deflection curves for different locations on 
PCC pavements showing extreme linearity of curves 7^ 

13 Measured values of dynamic stiffness versus dynamic load 
(15 Hz) 75 

lU        Possible experimental evidence for the existance of a 
critical frequency value of **L5 Hz for AC pavement     ....     76 

15 Nearly linear dynamic load-deflection curves obtained at 
15 Hz for AC pavement 77 

16 Dynamic load-deflection curves  for various static loads on 
AC pavement 79 

17 Experimental values of dynamic stiffness versus static load 
applied by the WES 50-kip vibrator operating at 15 Hz on AC 
pavement 80 

18 Experimental values of dynamic   stiffnefs versus dynamic 
load for various values of the  static load 8l 



Figure  Title  Page 

19 Experimental load-deflection curves for a series of base- 
plate sizes on AC pavement 6k 

20 Experimental load-deflection curves for a series of base- 
plate sizes on rigid pavement 85 

21 Experimental values of the dynamic stiffness versus the 
vibrator baseplate radius 86 

22 Experimentally derived values of the parameter k   versus 
baseplate radius 9k 

23 Experimentally derived values of the parameter b versus 
baseplate radius   9k 

2U        Experimentally derived values of the parameter e versus 
baseplate radius   93 

25 Experimentally derived values of the parameter *.-. versus 
vibrator baseplate radius 97 

26 Experimentally derived values of the parameter &_ versus 
baseplate radius    97 

27 Experimentally derived values of the parameter A.  versus 
baseplate radius 98 



LIST OF TABLES 

Table    Title    Page 

1 Mechanical Characteristics of Vibrators 71 

2 Comparison of Dynamic Stiffness Values as Measured by the 
Dynaflect Vibrator and the WES l6-Kip Vibrator (Concrete 
Pavement) 87 

3 Comparison of Dynamic Stiffness Values Measured by the Road 
Rater and by the WES l6-Klp Vibrator (Flexible Pavements)     .    89 

k        Comparison of Typical Dynamic Stiffness Values as Measured 
by the CERF Vibrator and by the WES l6-Kip Vibrator    ....    90 

5 Approximate Numerical Values of the Parameters Appearing in 
the Nonlinear Pavement Model  (WES l6-Kip Vibrator) 98 

6 Experimental Values of the Parameters Describing the Sub- 
surface Structure of Pavements at the WES Test Area    ....    99 



LIST OF SYMBOLS 

a       Contact radius of vibrator baseplate 

a 1 »a -,...a .        Critical contact radius of vibrator baseplate 

A       Amplitude of dynamic deflection of pavement surface 
directly beneath vibrator baseplate 

b       Third-order nonlinear elastic parameter 

B       Function of Poisson's ratio for the homogeneous 
half-space 

B1,Bp,...B.        Values of   B    for each pavement layer 

C       Damping constant of the pavement-vibrator system 

CH       Damping constant for homogeneous linear elastic half- 
space 

D       Algebraic discriminant 

e       Fifth-order nonlinear elastic parameter 

e Complex number notation for a sinusoidal time 
dependence 

$       Elastic strain energy density 

F_(t)       Dynamic load of vibrator 

Fn=F (ID)       Magnitude of the sinusoidal dynamic force applied to 
the pavement surface 

Fp(x)       Pavement-restoring force 

F Static load of vibrator s 
F Critical static load of vibrator 

sc 
F (t)        Total force applied to the pavement surface  (static 

plus dynamic) 

g       Acceleration due to gravity 

G       Shear modulus of homogeneous elastic half-space 

G Shear modulus of subgrade 
s 

G Shear modulus at the very top of the subgrade 

G .Gp.G.,...G. Shear moduli of pavement layers 

h1 ,h-,h-,...h. Thickness of the pavement layers 

H1 ,H_,H_,...H. Sums of pavement layer thicknesses 

i    *cr 
k       Effective spring constant of a nonlinear pavement 

s 

i^M&ifJii'-.il&UjiJliJ •:^-,tvilr'i.*^j...l.,,H.^^,>^ji;..   ..,.,..,,.■... 



kj.       Spring constant of a homogeneous linear elastic 
half-space 

k0       Effective quasi-static spring constant 

k00       Linear elastic parameter of a nonlinear pavement 

A       Finite depth of influence of the static strain field 

Än,£_,Ä., ,.. .£.        Coefficients of the power series expansion of the 
finite depth of influence 

m Lumped mass of pavement and soil 

n Number of layers of pavement 

Q Function of Poisson's ratio 

Q-. ,Q-,Q_,.. .Q. Value of   Q    for each pavement layer 

Q Value of    Q    for the subgrade s 

Q Value of   Q    at very top of subgrade s 
QG       Value of   QG    averaged over the depth of influence    I 

Q G Average value of    Q G      in the interval    £ - H_ s s s s 3 
S       Dynamic stiffness of pavement 

S Critical value of dynamic stiffness 

S0        Valup of the dynamic  stiffness obtained from    S    by 
taking   k = k0    (or A = 0). 

t        Time 

U       Elastic strain energy 

U9,U. ,U^,.. .U,        Coefficients of the power series expansion of the 
elastic strain energy 

V       Volume of the frustum of a cone having a depth equal to 
the finite depth of influence in.the pavement 

W       Work done during elastic deflection of the pavement 
under the action of the static load   F 

s 
Coefficients in the series expansion of W 

Total elastic deflection of the pavement surface under 
the vibrator baseplate 

Velocity of pavement surface 

Acceleration of pavement surface 

Static elastic aeilection of pavement surface beneath 

the vibrator baseplate 

Depth below surface of the pavement 

Coefficients appearing in the power series expansion 
of the amplitude of the dynamic deflection 

w2l vk 'W6 
X 

X 

X 

xe 

z 

al •V • • .a 
n 



n 

^l»^2,*"^n       Coefficients appearing in the power series expan- 
sion of the dynamic stiffness 

Y Weight density of the half-space 

6       Function of the expansion coefficients of the fi- 
lite depth of influence 

Ab       Value of the discontinuity of   b    for    I    ■ H. 

&e       Value of the discontinuity of   e    for    I. = H. 

AÄ,       Increment of finite depth of influencf 

AV       Increment of the volume of the frustum of the cone 
containing the strain field 

e       Vertical strain in pavement  (assumed constant) 

Cp.ei ,e/-       Expansion coefficients appearing in the expressions 
for   k00 ,    b  , and    e 

n        5/8 
6       Elastic volume dilation 

K       Ratio of the radius of the lower base to the radius 
of the upper area of the frustum of the cone of 
stress 

Kpjic, ,<-:       Expansion coefficients appearing in the expressions 
for   k00 ,    b  , and   e 

X Lame elastic constant 

y 3/1» 

v Poisson's ratio for homogeneous elastic material 

v Poisson's ratio for subgrade 

v  ,v_,v_,...v. Poisson's ratios for pavement layers 

5       Dynamic elastic deflection of pavement surface 
beneath the vibrator baseplate measured from the 
static equilibrium deflection 

p        Function of the expansion coefficients of the  finite 
depth of influence 

0       Angle which appears in the solution of the cubic 
equation for calculating    x      in terms of    F 

{ . es 
0n       Angle of stress distribution 

0p(a),0_(a),0. (a)        Functions of the baseplate radius and Poisson's 
^ ' ratio of the successive pavement layers 

| 2 -It 
ij^        F S      , expansion parameter 

V Volume factor for the frustum of the cone 

to       Angular frequency 

laAM^ii^i^»i«>«,^,.Ji'i;^^Mjj>tJ^fc.[v;i,.üft.- 



u   Critical angular frequency c 
wR   Resonance angular frequency 

A   Phase angle between the dynamic load applied to the 
pavement surface and the dynamic deflection of the 
pavement surface 

10 



"•'"■- ■ 

CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT 

British units of measurement used in this report can be converted to 

metric units as follow: 

Multiply 

inches 

feet 

square inches 

pounds (force) per 
inch 

pounds (force) per 
square inch 

pounds (force) per 
cubic inch 

kips (force) 

kips (force) per 
inch 

kip-second per 
inch 

kip-second   per 
inch 

JJL 

2.51+ 

0.30U8 

6.1*516 

175.1268 

0.6891t757 

27,679.91 

MU8.222 

1.7512685 

1.7512685 

1.7512685 

To Obtain 

centimeters 

meters 

square centitrjeters 

newtons/meter 

newtons per square 
centimeters 

kilograms per cubic 
meter 

newtons 

kilonewtons per 
centimeters 

kilonewtons-second per 
centimeter 

2 
kilonewtons-second per 

inch 

11 



1.     INTRODUCTION 

1.1    BACKGROUND 

Nondestructive vibratory testing of pavements may be of impor- 

tance toward predicting the performance of airfield pavements and may 
1-3 be used for the rapid evaluation of pavement strength. To be useful, 

the physical quantities measured by the nondestructive testing technique 

must be related to pavement performance.    Pavement performance is mea- 

sured by number of aircraft coverages on the pavement required to reach 

some defined condition of failure.    The U.  S. Army Engineer Waterways 

Experiment Station (WES) was requested to perform experimental and theo- 

retical investigations to determine if the physical quantities measured 

by the nondestructive technique can be used for pavement evaluation and 

can be related to pavement performance.    Some of the quantities that are 

measurable by the nondestructive vibratory technique are: 

a. The dynamic deflection of the pavement surface versus the 
frequency of vibratory loading for a series of fixed static 
and dynamic loads. 

b. The stress and strain distribution in the pavement around the 
vibrator measured on instrumented pavement sections. 

c_.    Rayleigh wave dispersion curves giving phase velocity versus 
wavelength measured with the wave propagation techniques. 

d.    The dynamic deflection of the pavement surface versus the 
dynamic force for a series of fixed static loads and fixed 
frequencies. 

Most of the previous work on the nondestructive testing of pavements has 

treated the mechanical quantities listed in Subparagraphs a, b, and £. 

This report concentrates primarily on the nonlinear response exhibited 

by pavements through the measurements listed in Subparagraph ji.    Further 

study of the physical quantities mentioned in Subparagraphs a^ b, and £ 

should be made in the light of the new results obtained from the study 

of nonlinear effects in pavements. 

1.2    OBJECTIVES 

The overall objectives of this pavement study are: 

a.    The development of a mechnical model which describes the 

13 Preceding page blank 
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measured response of pavements to a sinusoidal dynamic load- 
ing that is applied to the pavement surface. 

b. The development of a method for determining the subsurface 
structure of the pavement in terms of the measured dynamic 
response of the pavement. 

The development of the pavement response model Includes the fol- 

lowing specific objectives: 

a. To determine the effects of intrinsic pavement properties and 
structure on the dynamic load-deflection curves. 

b. To determine the effects of such vibrator characteristics as 
dynamic load, static load, and contact area on the dynamic 
load deflection curves. 

c,.    To calculate the dynamic stiffness and determine its depen- 
dence on the intrinsic properties of the pavement and on the 
characteristics of the vibrator used to measure this quantity. 

d.    To develop a theory of the nonlinear dynamic rosponee of 
pavements which enables the comparison of dynanic stiffness 
measurements obtained from different vibrators at the same 
pavement location. 

The theoretical work done in this report may have applications 

for the nondestructive testing of roads and airport pavements.    The 

possible practical applications of this work are twofold:     (a) the use 

of the dynamic stiffness measurement for determining the subsurface 

structure of the pavement, i.e., the shear modulus and thickness for 

each pavement layer, and (b) the development of the capability of com- 

paring the values of the dynamic stiffness measured by different vibra- 

tors at the same pavement location. 

1.3    SCOPE 

To achieve the objectives listed above, both theoretical and ex- 

perimental studies were conducted. 

1.3.1 THEORETICAL STUDIES 

The theoretical studies included: 

a. The formulation of a nonlinear mechanical model to describe 

the response of a pavement to static and dynamic loading. 

b. The determination of effects of the structure of the pavement- 
soil system on the parameters which appear in the nonlinear 
vibration model. 

Ik 



£. A numerical evaluation of the parameters that appear In the 
nonlinear model. 

d. The development of formulas giving the shear modulus and layer 
thickness of each pavement layer In terms of quantities that 
are obtained directly from the measured dynamic load- 
deflection curves. 

1.3.2 EXPERIMENTAL STUDIES 

The experimental studies performed on both actual airport pave- 

ments and especially constructed test sections Included: 

a. The measurement of dynamic load-deflection curves using a 
vibrator developed at WES which can generate dynamic loads 
up to l6 kips* (WES l6-kip vibrator) with a constant l6-kip 
static load and a constant frequency of 15 Hz. 

b. The measurement of dynamic load-deflection curves at a con- 
stant static load of 16 kips for a series of fixed frequen- 
cies in the range from 10~k0  Hz. 

c. The measurement of dynamic load-deflection curves at a con- 
stant static load of 16 kips and a constant frequency of 
15 Hz for a series of baseplates whose diameters ranged from 
5-18 in. 

d. The measurement of dynamic load-deflection curves at constant 
frequency and constant baseplate size for a range of static 
loads from 5-50 kips. 

* A table of factors for converting U. S. customary units of measure- 
ment to metric (SI) units is given on page 11. 
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2. LINEAR OSCILLATOR MODEL OF PAVEMENT RESPONSE 

2.1 GENERAL CONSIDERATIONS 

Nondestructive vibratory testing of pavements uses a mechanical 

vibrator operating at a known frequency and dynamic force applied to the 

pavement surface to produce a time-dependent sinusoidal deflection of 

the pavement surface directly beneath the vibrator baseplate.     The mag- 

nitude of the dynamic deflection of the pavement surface for a series 

of dynamic force levels and frequencies is considered to be a measure of 

the strength of a pavement.    This section discusses a linear oscillator 

model used to describe the motion of the surface of a linear elastic 

half-space and then shows how this model fails to account for the mea- 

sured values of the dynamic deflection of the pavement for a series of 

frequencies and dynamic loadings generated by the vibrator.    Th« con- 

cepts of dynamic stiffness and deflection are introduced, and the sep- 

aration of static and dynamic displacements is demonstrated. 

2.2 HOMOGENEOUS LINEAR ELASTIC 
HALF-SPACE 

The equation of motion of a mass of pavement or soil undergoing 

vertical oscillations on the surface of a homogeneous elnstic half-space 

is 

mX + CHx + kHx = Fv(t) (2.1) 

where 

m = lumped mass of pavement and soil 

X = acceleration of pavement surface 

CH = damping constant (3 * Ua /Gy/g/d - v), where a is the 
contact radius of the vibrator baseplate, G is the 
shear modulus of the half-space, y    is the density by 
weight of the half-space, g is the acceleration due 
to gravity, and v is Poisson's ratio. Reference k) 

x = velocity of pavement surface 

ku = spring constant {UGa/(l - v), Reference h) 
n 
x = total elastic deflection of the  pavement surface under 

the vibrator baseplate 

16 
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Fv(t) ■ total force applied to the pavement surface (static plus 
dynamic) 

t ■ time 

The values of kH and CH are chosen to construct a damped spring model 

for the vertical vibrations of an elastic half-space; therefore C,. n 
represents the radiation damping of the system. If viscous friction is 

present, the value of the actual damping constant may be considerably 

larger than the value of C„ . 

The total force applied by the vibrator is written as 

Fv(t) = Fg + FD(t) (2.2) 

where F  equals static load and F (t) equals dynamic load. The s u 
total displacement can be written as 

x = xe + 5 (2.3) 

where x  is the static elaatic deflection of the pavement surface be- 

neath the vibrator baseplate, F /k , and £ is the dynamic elastic 

deflection of pavement surface beneath the vibrator baseplate measured 

from the static equilibrium deflection. Combining Equations 2.1, 2.2, 

and 2.3 gives the equation of motion as 

m5 + CH<; + kH5 = FD(t) (2.1») 

wherein all static forces and displacements have canceled. Therefore, 

for a linear system, the static deflection does not affect the dynamic 

response of the vibrator mass; only the reference point is changed by 

the static load. 

2.3 DYNAMIC LOAD-DEFLECTION CURVES 

For a sinusoidal driving force, the dynamic deflection obtained 

from Equation 2.U is 

IT 



_, , v i(ü)t-A) 
Fn(u)e 

£ D          (2.5) 

Vf H " ™2) ^ ^ p2 2 

wherei 

FD(w) « magnitude of the sinusoidal dynamic force app led to 
pavement surface 

i(wt-A) 
e      ■ complex number notation for a sinusoidal time depen- 

dence where i - /l t    u = angular frequency, and A ■ 
phase angle between the dynamic load applied to the 
pavement surface and the dynamic deflection of the 
pavement surface. 

Two kinds of dynamic response curves of physical interest can be ob- 

tained from Equation 2.5! 

a. I^namic deflection versus frequency. 

b. Dynamic deflection versus dynamic force. 

For a linear system, the magnitude of the maximum dynamic deflection is 

a simple linear function of Fn((«>) as shown in Figure la. The magni- 

tude of the peak dynamic deflection as a function of frequency appears 

in Figure lb for a constant force vibrator and for an eccentric mass 

vibrator (where the dynamic force is frequency-dependent in the manner 

F_(u)) ~ u) ). The WES l6-kip vibrator is a constant force vibrator. 

Therefore, for a linear system the dependence of C on oi is rather 

complicated, but the dependence of 5 on F (w) is given simply by a 

straight line whose slope is the dynamic stiffness.  The phase angle A 

is assumed to be the same for all of the elements of the mass of pave- 

ment and subgrade which enter into motion with the vibrator mass.  This 

is the lumped mass assumption, which requires that m be interpreted as 

an effective mass which vibrates in phase with the vibrator mass and has 

a value which is determined by requiring that the theoretical frequency 

response curves agree with the measured frequency response curves. 

2.1» DYNAMIC STIFFNESS 

Equation 2.5 shows that for a linear system, the dynamic stiff- 

ness is given by 

18 



,-    ' 

g.oz 

/ 

s- 

0.01 

S 
^ 

/ 

o 
6 e 

DYNAMIC LOAD, KIPS 

o.  LOAD-DEFLECTION CURVE FOR LINEAR SYSTEM 

14 

15 20 
FREQUENCY, HZ 

b.   FREQUENCY RESPONSE OF LINEAR SYSTEM 

Figure 1.    Typical dynamic response of the linear spring model 

19 



.■■■  ■ .■•       ■ .■'■:   ,        . ^    ■■ ■■   ■ ■;■ 

>/(kH * ^ mu2)   + C^u)2 (2.6) 

and depends only on the following quantities: 

a. Frequency. 

b. Spring constant, 

c,. Damping constant. 

d. Lumped mass of pavement and soil. 

The elastic parameters of the pavement, G and v , and the radius of 

the contact area of the vibrator with the pavement enter the dynamic 

stiffness through k„ and C„ as seen from Equation 2.6 and the ex- 

pressions for the spring constant and damping constant. For a linear 

oscillator model, the dynamic stiffness does not depend on the dynamic 

load or on the equilibrium elastic deflection, i.e., C is a linear 

function of F-^u) . However, the experimental values of the dynamic 

stiffness of pavements, as given in Section k.l,  indicate a strong de- 

pendence of the dynamic stiffness on the dynamic load and on -ehe static 

elastic equilibrium displacement of the pavement surface. Therefore, 

the linear oscillator model is insufficient to describe the response of 

pavements to dynamic loadings, and a nonlinear oscillator model is re- 

quired to explain the experimental data. 
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3.    THE NONLINEAR MECHANICAL MODEL 

3.1    INTRODUCTION TO THE NONLINEAR 
MODEL 

In this section, a nonlinear mechanical model Is developed to 

describe the response of a pavement-subgrade system to a sinusoidal dy- 

namic loading applied to the surface of the pavement by a vibrator.    The 

model Is developed in three basic steps: 

a. The determination of the nonlinear pavement-restoring force 
in terms of three parameters:    the linear elastic parameter 
of a nonlinear pavement, the third-order nonlinear elastic 
parameter, and the fifth-order nonlinear elastic parameter. 

b. The solution of the motion equation (2.It) for the case of the 
nonlinear pavement-restoring force and the subsequent cal- 
culation, of the dynamic stiffness and deflection of the pave- 
ment as a lanction of the static and dynamic loads exerted by 
the vibrator. 

£.    The determination of the parameters    KQQ ,    b , and    e    in 
terms of the elastic constants of the layered pavement- 
subgrade system and in terms of the finite depth of influence 
that a static surface load produces in this system. 

If for a fixed frequency the dynamic deflection of the pavement 

surface is not directly proportional to the dynamic force, the system is 

said to be nonlinear.    The experimental data of Section h.l indicate 

that this is the case for most asphaltic concrete (AC) pavements and for 

some portland cement concrete  (PCC) pavements.    It will be shown in 

Section 3.8.2 that the nonlinear behavior of a pavement undergoing 

forced sinusoidal vibrations can produce very different values of dy- 

namic stiffness such as those measured at the same location by differ- 

ent mechanical vibrators.    Therefore,  it  is important to be able to 

account for the nonlinear effects by a simple physical model. 

A physical and mathematical model  for the nonlinear response of 

pavements can be derived which will account for the dependence of the 

impedance values on the type of vibrator used to determine them,  i.e., 

on the static weight, dynamic load, and contact area of the vibrator. 

This report will show that it is possible to describe the dependence of 

the measured values of pavement dynamic stiffness on the physical 
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characteristics of the vibrator by Introducing three parameters to de- 

scribe the nonlinear pavement-restoring force. 

3.2    NONLINEAR PAVEMENT-RESTORING 
FORCE 

The pavement-restoring force Is the force that the bulk pavement 

exerts on the lumped pavement mass from below.    In linear Equation 2.1, 

the pavement-restoring force Is simply   k^x .    In general, the pavement- 

restoring force is not equal to the force generated by the vibrator; 

only for the static case are these two forces equal.    The first task 

to be accomplished is the development of a mathematical expression for 

the pavement-restoring force which satisfies the following two very 

general criteria: 

a. The mathematical form of the pavement-restoring force will 
be sufficiently general so that the nonlinear dynamic re- 
sponse of the pavement that is calculated from this restoring 
force will be adequate to describe the experimental nonlinear 
dynamic load-deflection curves. 

b. Only terms based on sound physical theory are included in 
the mathematical form of the pavement-restoring force. 

The form of the nonlinear elastic pavement-restoring force used 

in the nonlinear model is determined by requiring the restoring force 

to be antisymmetric in the deflection of the pavement surface, i.e., 

Fp(x) = -Fp(-x) (3.1) 

where    Fp(x)    equals the pavement-restoring force.    Equation 3.1 is sat- 

isfied for the linear case,    Fp = kj-x .    A simple nonlinear pavement- 

restoring force which satisfies Equation 3.1, and which is found to be 

adequate to describe the dynamic load-deflection curves for pavements, is 

Fp(x) = k00x + bx3 + ex5 (3.2) 

where    kf.n    equals the linear elastic parameter of a nonlinear pavement 

while    b    and    e    equal respectively the third- and fifth-order non- 

linear parameters.    The experimental data of Section k.l indicate that 

at least two nonlinear elastic parameters,    b    and    e  , are required to 

22 

j..-,■.,.... . L    ..,,,\:.-j...;-.tj.i.....■-■■. 



describe AC and PCC pavements.    The linear upring constant    k..    which 

appears in Equation 3.2 is not in general equal to the spring constant 

ku   which describes the homogeneous linear elastic half-space. 
n 

3.3    EQUATION OF MOTION FOR THE 
NONLINEAR SYSTEM 

The equation of motion of the oscillating lumped pavement and 

soil mass can now be written using the expression for the nonlinear 

pavement-restoring force derived in the previous section.    This equation 

of motion cannot be completely separated into static and dynamic parts 

as was the case for the linear elastic  system. 

The equation of motion for the nonlinear spring is given by 

mX + Cx + k00x + bx3 + ex5 = Fv(t) (3.3) 

whsre    C    is the damping constant of the pavement-vibrator system, and 

m    is the in-phase lumped mass of the pavement and subgrade.    The value 

of    C    is larger than the value of the radiation damping constant    C,, 
n 

which appears in Equation 2.6 because C describes several material 

damping processes in addition to the dissipation of energy by mechanical 

radiation. Equation 3.3 can be greatly simplified by choosing a new 

origin of coordinates as in Equation 2.3, such that the motion is de- 

scribed in terms of coordinates measured relative to the static equilib- 

rium deflection. By itself the static load produces a static deflection 

given by 

F = kAnx + bx3 + ex5 (3J0 
s   00 e    e    e 

Substituting Equation 3.^ into Equation 3.3 enables the equation of 

motion to be written as 

mX + Cx + k00(X - xe) + b(x3 - x3) + e(x5 - x^) = FD(t)  (3.5) 

Using Equation 2.3 and the fallowing algebraic identities: 

x3 - x3 =  U - x   )(x2 + xx    +    x2) (3.6) e e   \ e e/ 
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x5 - x5 « (x - x )(x   + x3x    + x2x2 + xx3 + x ) (3.7) e e\ e e ee/ 

allows Equation 3.5 to be rewritten as 

mi + CC + k0£ + b?3 + eC5 = FD(t) (3.8) 

where    k.    is the effective quasi-static spring constant and is defined 

k0 = k00 + 3bxe + 5exe + «(xe0 (3-9) 

and 

g(x 5) = 3bx 5 + 10ex35 + lOex2?2 + 5ex C3 (3.10) e e e e e 

Equation 3.8 is a generalization of the Duffing Equation. 

3.U    EFFECTIVE SPRING CONSTANT 

In this section, the equation which determines the amplitude of 

the sinusoidal dynamic deflection of the pavement surface beneath the 

vibrator mass is developed.    The amplitude equation is expressed in 

terms of an effective spring constant which in turn depends on the 

static and dynamic deflections of the pavement surface.    The dynamic 

stiffness for the nonlinear system will eventually be expressed in terms 

of this effective spring constant. 

The functions    kn(x C)    and    g(x O    are time-dependent, and 

therefore Equation 3.8 is very difficult to solve exactly.    Under spe- 

cial conditions to be described, the coefficient which appears in Equa- 

tion 3.8 may be teuton to be independent of time,  thereby making this 

equation somewhat easier to solve.    For harmonic motion, the dynamic 

force applied to the pavement surface by the vibrator can be written as 

FD(t)  = FD(a,)eiu)t (3.11) 
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C(t) - Aei(wt-A) (3.12) 

where   A    equals the amplitude of the dynamic deflection of the pavement 

surface direct]y beneath the vibrator baseplate.    The dynamic deflection 

of the lumped mass is assumed to be equal to the dynamic deflection of 

the pavement surface.    For the case in which the dynamic deflection 

amplitude is much less than the static equilibrium deflection,    A « x    , 

g(x £) * 0    can be used in Equation 3.9. while for the case where 
l 

A * x , the time-averaged value of g(x 5) * lOex  can be used in 

Equation 3.7. For the two special cases, the coefficient kn can be 

written as 

k0 = k00 + 3bxe + 5eXe   A ^ Xe (3-:L3) 

k0 a: k00 + 3bxe + 15exe   A*Xe {3'lk) 

A simple linear interpolation formula for k  is given by 

^2t> k0 = k00+3bXe+ 5(1 + 2r)exe (3-15) 

It should be noted that the choice of    k.    as time-independent is an ap- 

proximation which becomes invalid for large dynamic deflections. 

Even with the coefficient    kn    assumed to be time-independent. 

Equation 3.8 is a nonlinear equation.    However, it can be shown that 

Equation 3.8 can be cast into the form of an equivalent linear system 

whose amplitude equation is 

A2[(k - m*2)    + C2ü)2J = F2(a)) (3.16) 

provided an effective spring constant is introduced which is defined by 

k = k0 + MbA2 + r\eAk (3.17) 

where k_ is given by Equation 3.15, V =  3A , and n = 5/8 . The 
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effective spring constant,    k , Is seen to be a function of the ampli- 

tude of the dynamic deflection aid also depends on the static equilib- 

rium deflection through the coefficient    k    .    If the static load ap- 

plied to the pavement by the vibrator were zero,    then   x   * 0 , 

g(x 5) ■ 0 , and    k0 ■ k00 .    For this case, there could be no coupling 

of terms between   x     and   5   and the effective spring constant would 

depend only on the amplitude of the dynamic deflection.    On the other 

hand, if the dynamic load were zero, the effective spring constant would 

be   k = k.    and would depend only on the static equilibrium deflection. 

3.5    CALCULATION OF THE DYNAMIC STIFF- 
NESS AND THE DEFLECTION AMPLI- 
TUDE FOR NONLINEAR PAVEMENTS 

This section considers the calculation of the dynamic stiffness 

and the dynamic deflection of the pavement surface and dynamic forces 

generated by the vibrator.    The deflection amplitude equation (3.16) 

derived in the previous section is expanded in powers of the deflection 

amplitude,    A , to give a tenth-order algebraic equation for the de- 

termination of    A .     Infinite series expansions for the dynamic ampli- 

tude and the dynamic stiffness are obtained as solutions to this equa- 

tion.    These solutions express the dynamic stiffness and deflection as 

functions of the dynamic load generated by the vibrator and the static 

deflection of the pavement surface.    The static deflection is then ex- 

pressed in terms of the static load, so that  finally the dynamic stiff- 

ness and deflection are expressed in terms of the static and dynamic 

loads at which the vibrator is operated. 

3.5.1    EQUATION FOR THE DYNAMIC 
DEFLECTION AMPLITUDE 

The explicit equation for the dynamic deflection amplitude will 

now be calculated. The dynamic stiffness of the pavement which is de- 

scribed by a nonlinear oscillator is given by 

S2 = (k - mo)2)    + c2
u2 {3lQ) 

where the effective spring constant is given by Equation  3.17.    The 
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dynamic stiffness depends on the amplitude of the dynamic displacement 

and the static equilibrium deflection.    The amplitude of the dynamic 

deflection Is determined by Equation 3.16, which may be written as 

A2S2 = F^a.) (3.19) 

Using Equations 3.17 and 3.18, the amplitude equation (3.19) can be 

written as 

SQA
2
 + 2Mb(k0 - mu

2)A <■ [2n(k0 - ina)2)e + w2b2 1 A6 

+ 2ynbeA8 + n2e2A10 = F2(ü))    (3.20) 

where S- Is the value of the dynanic stiffness obtained from S by 

taking k = k  (or equi 

defined by the equation: 

taking k = k  (or equivalently A = 0 in Equation 3.17) and is 

S0 
2 = (k0 - mu)

2) + C2ü)
2 (3.21) 

Whereas the simple linear system produces a linear equation for the 

calculation of the dynamic displacement in terms of the dynamic force, 

the nonlinear system appropriate to describe dynamic pavement response 

produces a fifth-order equation for calculating    A      in terms of    Fn((i>) 

The value    Sn    appearing in Equation 3.21 is the dynamic stiffness in 

the limit of zero dynamic loading. 

3.5.2    POWER SERIES EXPANSION 

The tenth-order equation (3.20) will now be solved for the dy- 

namic amplitude    A    which will take the form of an infinite series ex- 

pansion.     The dynamic stiffness is calculated in terms of   A   by Equa- 

tion 3.19 so that    S    also will have the fcrm of an infinite series 

expansion. 

The solution of Equation 3.20 for the amplitude of the dynamic 

displacement In terms of the amplitude of the dynamic  force is, in 
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general, difficult to obtain analytically.    For the case In which the 

dynamic force Is not very large, the amplitude of motion and the dynamic 

stiffness are easily obtained from Equation 3.20 In the form of 

FD((ü) / 2 \ 
A » —       f 1 + 01^ + oi2r +... j (3.22) 

S » S0f 1 + ß^ + B2^2 +... j (3.23) 

where 

o , Op = coefficient appearing in the power series expansion of 
the amplitude of the dynamic deflection 

ij« = expansion parameter 

S,, fäp = coefficients appearing in the power series expansion of 
the dynamic stiffness 

The values of    ij» ,    a    ,    a.  ,     ß.   , and    ßp    can be obtained by com- 

bining Equations 3.20 and 3.22 with tie following results: 

iM^-r- (3.2U) 
S0 

and 

o1 = -ub(k0 - toL2) (3.25) 

«2 = I y2b2(k0 - mu,2)   - S2[ne(k0 - rm2) + ^j (3.26) 

ß1 = pb(k0 - rm2J (3.27) 

ß2 = S^ Le(*0 - mo,2) + ^1 - | Vi2b2(k0 - ma.2) (3-28) 

The solutions given in Equations 3.22 and 3.23 are valid provided the 

dyneunic load is not so large as to prevent the convergence of these 

power series solutions.     Equations 3.22-3.23 have been derived from 

Equation 3.19 and give the fundamental description of the nonlinear dy- 

namic load-deflection curves.     These equations will be  fitted to 
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experimental dynamic load-deflection curves in Section h.2.2. 

Equation 3.22 shows that the amplitude of the dynamic deflection 

is not a linear function of    FD   but approaches the linear condition for 

small   F_    or large    S-  .    The linear system can be regained by setting 

b = e = 0    in Equations 3.22-3.28.    When    F   = 0  ,    A = 0    and   S = S    , 

and the dynamic stiffness depends only on the static equilibrium deflec- 

tion.    If   F    = 0  , the deflection and stiffness are given by Equations 
s 

3.22-3.28 with the provision that    k.    be replaced by the constant    km  . 

The static equilibrium deflection can always be expressed in terms of 

the static load through Equation 3.^.    Therefore, in general, the dy- 

namic stiffness of a nonlinear system will depend on the magnitude of 

F      and   F    .    The dependence of   S    on    F      enters through the expan- 

slon parameter    ^    given in Equation 3'2k, while the dependence of    S 

on   F     enters through the function   Sn    given by Equation 3.21. 
s u 

3.5.3    FIRST-ORDER NONLINEAR TERM 

The expression for the dynamic amplitude    A    given in Equation 

3.22 shows that    A    does not depend linearly on    F    .    The departure 

from linearity is due to the terms    a ty  ,    a ty    ,..., that appear in 

Equation 3.22.    It is desirable to determine the physical quantities 

which determine the degree of departure from the linear condition, 

A = F /S- .   In the range of small   F    , the predominant term describing 

the nonlinear behavior of the deflection of the pavement mass is ob- 

tained from Equations 3.22,   3.2h, and 3.25 as follows: 

„2 

a^ = -ub(k0 - ma)2j -| (3.29) 

0 

In general the degree of nonlinearity depends on four quantities: 

a. The magnitude of the nonlinear parameters b and e . 

b. The relative magnitudes of F  and F . 

£, The frequency at which the vibrator is operated. 

d. The static stiffness S of the pavement-vibrator system. 

The parameter i|/ , which appears in the infinite series expansion for 

A and S in Equations 3.22-3.21*, depends inversely on S  in the 
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form   Sn    , and therefore it follows that the dynamic load-deflection 

curves of stiff pavements are more linear than those of the more flexi- 

ble pavements.    Thus concrete pavements are expected to have a more 

linear response to a dynamic loading than do the more flexible asphalt 

pavements.    The value of    S-    includes the effects of the subgrade as 

well as the effects of each layer in the pavement. 

3.5.1*    CRITICAL FREQUENCY 

It is clear from Equations 3.22 and 3.29 that the degree of de- 

parture from the linear condition expected for the response of a pave- 

ment to an applied vibratory load at the pavement surface depends on 

the frequency at which the vibrator is operated.    In particular,  it is 

apparent from Equation 3.29 that the first-order nonlinear term is 

frequency-dependent and that this first-order term will vanish at a 
2 

special critical frequency for which    kn - nuü   = 0 . 

It is a characteristic property of the first-order nonlinear 

term (Equation 3.29) that there is a critical frequency for which this 

term vanishes; the critical frequency is defined by 

^ = r2- (3.30) c      m 

where u  is the critical angular frequency. In terms of the critical 

frequency, the first-order nonlinear coefficient can be written as 

a1 =  -ubm(ü)c - ü) ) (3.31) 

At the critical frequency, the departure from a linear system occurs 
2 

only through the second-order and higher terms in    ^  ,  i.e.,    a ip 
3 + t-ty    +....    Therefore at the critical frequency, the pavement response 

for small dynamic loads should be nearly linear.    The critical frequency 

depends on the vibrator characteristics as well as on pavement proper- 

ties.     The connection between the resonance frequency and the critical 

frequency is obtained from Equation 3.17 as follows: 
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4-<*'*H^-*ik) '^) 
where   u^   is the resonance angular frequency.    In general    u^ < u    . 

n ' ' n        c 

3.5.5    CRITICAL STATIC FORCE 

In addition to a critical fn 

the static load of the vibrator, there is a critical static load   F 
sc 

for each operating frequency of the vibrator, which is defined from 

In addition to a critical frequency,    u (F  )    which depends on 

Equation 3.29 by    a    = 0    or 

kn(F    ) = ma)2 (3.33) 0    sc 

Using Equations 3.15.  3.31, and 3.33, the first-order coefficient    a 

can be written as 

a,   =pb[k0(F8)-k0(Fsc)] (3.310 

k00    V ' 

It is possible to operate a vibrator at the critical condition by ad- 

Justing either the frequency or the static load of the vibrator. 

3.5.6    SHAPE OF THE DYNAMIC 
LOAD-DEFLECTION CURVES 

An approximately linear dynamic deflection versus dynamic force 

curve occurs at the critical frequency.    For an arbitrary frequency, the 

departure from this approximately linear curve is positive or negative 

depending on the sign of the parameter    a      in Equations  3.22 and 3.31. 

The sign of the parameter    a      depends on the sign of the parameter   b 

and whether    w ^ w      or    F    ^ F      .It will be shown in Section 3.7 c s        sc 
that    b    is generally negative.    For the case    b < 0  ,  which corresponds 

to the case in which the shear modulus of the half-space is constant 

with depth, or to the case of a leered system which has    G    decreasing 

with depth, as is usually the case with pavements, the dynamic stiffness 

and deflection versus dynamic  force curves are shown schematically in 
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Figure 2a.    For the case    b > 0 , which may be poesible J'or the situa- 

tion in which the shear modulus of a layered system increases rapidly 

with depth, the dynamic stiffness and displacement versus dynamic force 

curves are shown schematically in Figure 2b.    Therefore the choice of 

sign    b < 0   has physical relevance to pavement problems.    For the 

choice    b < 0 ,  the sign of the parameter   a      can be positive or nega- 

tive depending on whether    u < u      or   u > w    , respectively.    The value 

of    u     can be determined by observing the frequency which produces the 

most linear load-deflection curve.    The algebraic signs of    b    and    e 

can be determined from the manner in which the dynamic load-deflection 

curves bend away (as in Figures 2a and 2b) from the approximately linear 

load-deflection curve which occurs at   UJ = w    .    It should be pointed 

out that the definition of dynamic stiffness as being equal to the ratio 

of the dynamic load to the dynamic deflection for each point on the dy- 

namic load-deflection curve is different from that used in Volume I of 

this report in which the dynamic  stiffness is taken to be a single num- 

ber determined from the portion of the dynamic load-deflection curve 

where    F      is large. 

3.5-7    STATIC EQUILIBRIA DISPLACEMENT 

The explicit dependence of the dynamic stiffness on    F      is given 

by Equations 3.22-3.28.     These equations will also give the explicit 

dependence of    S    on    F    ,  provided that the static equilibrium dis- 

placement    x      is expressed explicity as a function of    F      by  using 
e s 

Equation 3.^.    Because Equation 3.1+ is an equation of fifth degree, 

numerical methods are generally required for its solution.     However,  in 

the extremes of very large and very small values of    F    ,  analytical 
s 

solutions of this equation are possible.    For a very small  static  load, 

the equilibrium elastic  displacement  is given by 

F 
x    =-^- (3.36) 

e      K00 

For somewhat larger values of    F     ,  the cubic term manifests itself and 

x      may be obtained from the approximate equation: 
e 
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Figure 2. Theoretical dynamic load-deflection curves and dynamic 
stiffness curves predicted by the nonlinear spring model 

33 



The discriminant of this cubic equation is 

2 3 F k 
D = ^- + -^ (3.38) 

l*b        2TD 

and is negative for small    F      when    h < 0 .    For the condition    D < 0 , 
S 7 the solution of the cubic equation can be written as 

^co6(f) (3.39) 

is.ko) 

where 0 is the angle which appears in the solution of this cubic equa- 

tion. In the limit of smal] 

Equation 3.39 has the value 

tion. In the limit of small F  (or small b), the cosine term in s 

F3 

cos m=      I   S ,      +1 
S
TT7T+... (3.1+1) 

3b 

Combining Equations 3.39 and 3.hi gives 

F bF3 

00    koo 

The solutions of Equations 3.39 and 3.^2 have been derived for    b < 0 

and are therefore applicable to pavements.    It can be shown that Equa- 

tion 3.^2 is also valid for   b  > 0  . 

With increasing values of    F    , the fifth-order terras become dom- 

inant, and in this region the approximate solution for    x      is 

e 

fF        k      /F X1^ /F x?'^
1/5 

^M---^!^1 5 .*iF-A 51 i-iM) 

3k 



 fciü-'' •■'--' -i^ 

Equation 3.k is easily solved for the general case of an arbitrary value 

of    F      by using a digital computer.    A schematic graph of    x     versus 
S 6 

F      for pavements (b < 0) is given in Figure 3a while the corresponding s 
graph for a   b > 0    formation is given in Figure 3b. 

3.5.8    DEPENDENCE OF THE SPRING CONSTANT 
ON THE STATIC FORCE 

The spring constant    kQ    given by Equations 3.13-3.15 has a con- 

ventional interpretation only when the dynamic deflection amplitude sat- 

isfies    A << x    .    For    k j 0    the spring constant has the approximate 

value given by Equation 3.15.    Using Equations 3.13,  3.^2, and 3.^3,  the 

value of    k      for zero dynamic amplitude and for small    F      is 

k0 = k00 + 3bl^---^I    +5e|^ f^l (3.M0 

while for large    F 

ko = koo + 3b 

+ 5e 

F 

■-*)"■¥&)■"]"" 
F 7^3/5     „     /1?\l/5llt/b 

s -m MW\    <- 
For very small F , Equation 3.hk  can be rewritten as 

ko = koo + 3bl fe)2+(r6öftj    (3-w 

while for very large    F    , Equation 3.^+5 can be rewritten as 
s 

fr) 

h/3 

k0 = 5el^l (3.1*7) 

Equations 3.^ and 3.15 are easily solved simultaneously on a digital 

computer to give the general solution, k0 = kJF ). Figures ha.  and b 
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show respectively the dependence of    k      on    F      for pavements  (b < 0) 
u      s 

and for b > 0 formations. For the case b < 0 , the function k- 

exhibits a local minimum value for some value of F (or x ). 
s     e 

3.5.9 DAMPING CONSTANT 

The dynamic stiffness defined by Equation 3.18 depends on the 

damping constant C of the pavement as well as on the effective spring 

constant k .  This damping constant is not in general equal to the 

damping constant for the homogeneous linear elastic half-space, Cu  , 

that was defined in the damping constant expression. A theoretical cal- 

culation of C was not made in this report; however, the nonlinear 

elastic nature of flexible pavements gives rise to a simple method of 

estimating the value of the damping constant.  Equations 3.17, 3.18, and 

3.30 show that when u = w  , the dynamic stiffness has the critical 

value: 

S c 
=  \(ybA2 + neA )   + C2u)2 

' c 

* ^207" {3.hö) 

Therefore a measure of the damping constant can be determined directly 

from the dynamic load versus deflection curves  by measuring the critical 

value of the dynamic stiffness.    An approximation to the value of the 

damping constant is thus given by 

S 
C = -—z (3.U9) 

3.6 PHYSICAL ORIGIN OF THE NONLINEAR 
PAVEMENT PARAMETERS 

3.6.1  INTRODUCTION OF THE FI- 
NITE DEPTH OF INFLUENCE 

This part of the report examines the physical origin of the pa- 

rameters k , b , and e that were introduced in Section 3.2 as pg 

of a model developed to account for the observed nonlinear vibration 
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data that will be presented in Section k.l.    It is the departure from 

perfect linear elasticity that is responsible for the nonlinear response 

of vibrators operating at the surface of pavements and soil formations. 

Over a large depth in the half-space, the departure from a perfectly 

linear constitutive equation for soils and pavements has the effect of 

introducing a finite range of influence of the elastic stress and strain 

due to a static surface loading on an elastic half-space. In this re- 

port the finite range of influence of the static stress and strain is 

assumed to produce the experimentally observed nonlinear dynamic load 

deflection curves. 

3.6.2 DEPARTURE FROM LINEAR ELASTICITY 

Many authors have studied the problem of the static embedding of 
0 

a circular punch into a linear elastic half-space.  Layered elastic 

half-spaces have been considered and so has the case in which G has a 

power law variation with depth. ~   The case in which G has a simple 

linear variation with depth has been worked out completely.   All of 

these theories are insufficient to explain the experimental data appear- 

ing in Section k.l  because these theories are based on the assumption of 

a perfect linear elasticity. One of the characteristics of a nonhomo- 

geneous perfectly linear elastic half-space is that the static load- 

deflection curve and the dynamic load-deflection curve are straight 

lines. For instance, a stack of perfectly linear elastic layers of 

different values of v and G produces a linear load-deflection curve 

for a load applied to the surface of the stack.  This is so because the 

static stress and strain in a perfectly linear elastic half-space ex- 

tend to an infinite depth and to an infinite radial distance, and the- 

oretically the entire stack of elastic layers contributes to the deflec- 

tion of the load at the surface of the stack.  In a perfectly linear 

theory of elasticity, the static load-deflection curve for a stack of 

layers can always be reproduced by an equivalent homogeneous three- 

dimensional half-space with an equivalent spring constant. Therefore, 

a nonhomogeneous linear elastic system exhibits a linear load-deflection 

curve, and nonhomogeneity by itself is insufficient to explain the 
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nonlinear load-deflection curves observed on pavements and soils.    A 

basic departure from linear elasticity is required to account for the 

observed nonlinear response of vibrators which are operated on the sur- 

face of airfield pavements.    The nonlinear behavior of pavements is an 

example of the inadequacy of linear elasticity to explain the dynamic 

response of real materials. 

The static stress and strain field has a finite range of influ- 

ence in real systems such as PCC, AC, or soil.    This is a fundamental 

characteristic of real media.    If a static load is placed on the  surface 

of a soil foni-dtion or a pavement, the static stress and strain attenu- 

ate rapidly with depth and radial distance and go to zero at some finite 

depth below the surface and at some finite radial distance from the 

load.    The stress and strain field in a real half-space does not extend 

to infinite depth as it does for the case of the Boussinesq and Terazawa 

treatment of the static load applied to the surface of a linear elastic 
12 13 half-space.     '        For i-eal materials, the depth of influence depends on 

the size of the loaded area, the magnitude of the static load,  and the 

intrinsic nonlinear properties of the material.     For a dynamic  load, 

there is also a finite range of influence in real media where the dy- 

namic amplitude of the three-dimensional elastic waves emanating from a 

source goes to zero.    For the dynamic source, the finite range of in- 

fluence is generally thousands of feet or often miles; but for the 

static source, the finite influence distance is generally a few feet or 

inches.    Both homogeneous and nonhomogeneous materials exhibit a finite 

range of influence, and in this report it is assumed that the finite 

static depth of influence combined with the variation of the elastic 

properties of a pavement with depth determines the magnitude of the non- 

linear response of a pavement to static and dynamic loads applied to the 

surface. 

Only a small departure from the linear stress-versus-strain con- 

stitutive equation is required to produce a finite range of influence of 

several feet.    A small specimen of this solid would exhibit essentially 

linear characteristics during laboratory load-deflection tests  or stand- 

ing wave tests.     Only over a distance of several feet  in an actual soil 
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formation or pavement would the nonlinear constitutive equation manifest 

itself by the finite range of the stress and strain field.    The spring 

constant for a real elastic half-space depends on the static range of 

influence and on the values of    v   and    G   which are contained within 

the static range of influence.    In this chapter, the foregoing arguments 

are placed on a quantitative basis by a calculation of the nonlinear 

response of a one-dimensional representation of an elastic half-space 

for aay distribution of    v   and   G   with depth. 

The four calculations required to determine the three parameters 

kon ,    b , and    e    are: 

a. Work done by the static elastic deflection of the pavement 
surface beneath the vibrator baseplate  (Section 3.6.3). 

b. Static strain energy in the pavement (Section 3.6.10. 

c^.    Calculation of average elastic parameters for a one- 
dimensional layered system (Sections 3.6.5 and 3.6.6). 

d.    Representation of the finite depth of influence by an in- 
finite series (Section 3.6.?)• 

3.6.3    WORK ASSOCIATED WITH STATIC 
ELASTIC DEFLECTION 

The dynamic load applied at the surface is determined by the 

three parameters    k       ,    b , and   e .    A general method of calculating 

these three parameters in terms of the variation of    v    and    G   with 

depth is required.    The static elastic  indentation as a function of 

static load can then be calculated from Equation 3.^ using these three 

parameters.    The method used to calculate    kno  ,    b  , and    e    is an en- 

ergy method which equates the work done during the indentation of a 

rigid punch into the surface of an elastic half-space to the increase of 

the potential strain energy of the half-space.    The work done by the 

static load is obtained from Equation  3.'* to be 

u      2 ^ ^          6 knnx bx        ex 

2 It           6 

- W2Xe + Ve + Ve                                     (3-50) 
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where W- , W. , and Wg are the coefficients in the power series ex- 

pansion of W . Only a static approach to the calculation of knn , 

b , and e is undertaken in this report, and it should be realized that 

a fully dynamic calculation of these parameters may introduce a fre- 

quency dependence. 

3.6.It STRAIN ENERGY OF AN ELASTIC 
HALF-SPACE WITH A FINITE 
DEPTH OF INFLUENCE 

The elastic strain energy of a pavement-soil system can be ex- 

pressed in terms of the equilibrium static elastic displacement x . 

A complete three-dimensional calculation of the strain energy of a non- 

homogeneous nonlinear half-space is very complicated. The calculation 

of the static strain energy that is done in this chapter is a one- 

dimensional approximation of the actual physical situation.  In this 

calculation it is assumed that the strain in the half-space is in the 

vertical direction only and is confined to a frustum of a cone whose 

upper area is equal to the area of the vibrator baseplate. The height 

of the frustum of a cone is taken to be equal to the finite depth of in- 

fluence in the pavement, and the area of the lower base is chosen to 

make the theoretical values of the finite depth of influence agree with 

the experimental values. 

The frustum of the cone in which the strain is assuramed to be 

confined is shown in Figure 5. The volume of the frustum is given by 

V = ira2^ (3.51) 

where 

V = volume of the frustum of a cone having a depth equal to the 
finite depth of influence in the pavement 

i  = finite depth of influence of the static strain field 

y = the volume factor for the frustum of the cone which is cal- 
culated as follows: 

2 
y  = 1 + ^ •*• K (3.52) 
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where ic equals the ratio of the radius of the lower base of the 

frustum to the radius of the upper area of the frustum. Experimental 

tests show that * * 1+ and K * 3 for AC pavements. 

It is assumed that the strain energy can be written in a form 

analogous to that for a perfectly linear elastic system except that the 

depth of influence is taken to be finite. The elastic strain energy 
Ik 

density for a homogeneous solid is 

2 
gsGe2 + M_ (3.53, 

where 

g = energy density 

e = strain in vertical direction 

X = Lame elastic constant 

9 = elastic volume dilation 

The validity of Equation 3.53 for a material with a finite depth of in- 

fluence arises from the essentially linear elastic behavior of most 

solids including FCC and AC under a small, uniformly disturbed stress. 

This implies that    G    and    A    have a physical meaning even for real 

solids.    It is only over a long distance from a static surface source on 

a half-space  (which produces a nonuniform distribution of stress and 

strain) that the nonlinear effects manifest themselves by producing a 

definite cutoff range for the stress and strain. 

An approximation to the strain energy density of a real half-space 

is given by Equation 3.52 if the finite depth of influence is introduced 

through    e    and    6  .     For a one-dimensional representation of an elastic 

half-space, the strain and dilation can be approximated by 

A£        e /-, ci » 

2      u, 

fi  = — = e e 

tra M 
.55) 

where 
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A£ = increment of the finite depth of influence 

AV » increment of the voliune of the frustum of the cone contain- 
ing the strain field 

Therefore within the limits of the vertical strain approximation, e 

and 9 axe equal, and the strain energy density for a homogeneous half- 

space can be written as 

2 

6= (o^YA (3.56) 

The total strain energy for the homogeneous material in the cylinder 

of influence can be written as 

2 

HK* U =6V = na2* lG + £1^- (3.57) 

where U is the elastic strain energy. In engineering practice it 

is customary to use Poisson's ratio in place of the Lame elastic con- 

stant. In terms of Poisson's ratio. Equation 3.57 is written as 

2      2 
Tra QGx ¥ 

U=——^- (3.58) 

where    Q , the function of Poisson's ratio,   is expressed as 

z^rrk (3-59) 

For a nonhomogeneous half-space for which    v    and    G    vary with depth, 

the strain energy is written as 

2— 2 
ira QGx 4- 

U =  r—2- (3.60) 

where    QG   equals the value of    QG    averaged over the depth of 

influence    l  . 

3.6.5    LAYERED ELASTIC MODEL OF 
PAVEMENT AND SOIL SYSTEM 

A pavement-soil system generally consists of a layer of PCC or AC 
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overlying several layers of crushed rock base and subbase, all of which 

rest on the subgrade which is the natural soil foundation. A model 

representing the pavement-soil system consists of a series of elastic 

layers, with v and G constant in each layer to represent the pave- 

ment, base, and subbase overlying an elastic half-space. This half- 

space represents the subgrade and therefore has v and G increasing 

continuously with depth because the overburden pressure increases con- 

tinuously with depth. This variation of v and G with depth is rep- 

resented in Figure 6. 

3.6.6 AVERAGED ELASTIC PARAMETERS 

The average value, QG , required in Equation 3.60 is calculated 

by averaging over the depth of influence I    as follows: 

QG = Q;LG1 , £ < ^ (3.61) 

^ = HQlGlhl + Q2G2U " V] ' h1 < Ä < H2 (3.62) 

^ = i[QlGlhl + Q2G2h2 + Q3G3(£ ' V]'     H2 < il < H3 (3.63) 

where Q..G , Q?G , and Q^G-. equal respectively the value of QG in 

layers 1, 2, and 3, h , h2 , and h_ equal respectively the thick- 

nesses of layers 1, 2, and 3,  H > Hp , and H  equal the sums of 

pavement layer thicknesses, and where 

H2 = h1 + h2 (3.61+) 

H3 = h1 + h2 + h3 (3.65) 

Equation 3.6l is valid if the depth of influence extends only into the 

upper layer, while Equation  3.62 is valid if    l    extends  into the seoond 

layer, and finally Equation 3.63 is valid if    i    extends into the third 

layer.    The generalization of Equations 3.61-3.63 to more than three 

layers is obvious.    Equations   3.61-3.63 are valid only if the depth of 
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influence is contained within the pavement, base, and subbase, i.e., the 

layers in which v and G are constant. If the depth of influence ex- 

tends into the subgrade, then the proper average is 

QG = I [Wl ^ W^ + C^ + QgGs  U - H3)] ,'      .  > H3       (3.66) 

where G  equals the shear modulus of the subgrade, Q  equals the 
s s       ^______ 

value of Q given by Equation 3.59 but for the subgrade, and Q G 
s s 

equals the average value of Q G  in the interval )!, - H_ . The 
S S j 

product    Q G     for soil at a depth    z    below the surface of the paven s s 
can be written as a Taylor series expansion as follows: 

U - HJ 0 0      d(QsGs) 

Q  (z)G  (z) = Q0G0 +  $-2- 
s        s s s dz 

H, 

.   1 d  (Vs) 

2       , 2 dz 
(z - E3r +. (3.67) 

where Q G  equals the product Q G  for the soil at the very top of 
S 5 o S 

the subgrade, i.e., the value of Q G  at Ü, = H- . The average value 
S S j 

Q G  appearing in Equation 3.66 is assumed to be given as 
s s   - g 

Q G = v s s   Ä ̂ r / «s=s 
dz (3.68) 

Using Equation 3.67» the average becomes 

Q G = Q G + - 
0.0 . 1 d(QsGS) 

s s   s s  2  dz 

. 1 d CQsV 
6   .2 dz 

U  - H3) 

a - H3r +. (3.69; 

and this value is used in Equation 3.66. 
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3.6.7 SERIES EXPANSION OF THE FINITE 
DEPTH OF INFLUENCE 

The physics of pavements and soils enters through a calculation 

of the depth of influence, i  , from a fundamental knowledge of the 

molecular structure of pavement and soil materials and from a knowledge 

of the cracks, voids, dislocations, and other microscopic flaws in these 

materials. A basic calculation of Ä from a theoretical physics point 

of view has not been carried out in this study. In this report, the 

static depth of influence is assumed to be given by 

Ä = )l0 + l2x*  + Äj^Xg +... (3.70) 

where    Än  »     ^p  »  an^    ^h    are coefficients of the power series expan- 

sion of the finite depth of influence, and depend on the radius of the 

contact area of the load with the pavement surface and on the values of 

v    and    G    of the pavement-soil system.    The choice of the form of Equa- 

tion 3.70 is dictated by the even powers of the work function in Equa- 

tion 3.50.     A rigorous calculation of the values of    i    ,    £     , and    Ä.v 

has not been accomplished theoretically.     In this report the values of 

£     ,    i    ,   and    £>     are estimated from the experimental values of    k       , 

b  ,  and    e   . 

3.7    CALCULATION OF THE NONLINEAR 
PARAMETERS 

All of the quantities required for the determination of    k.     , 

b  ,  and    e    have been calculated in the previous five sections.     Now the 

energy principle, that the static potential strain energy must equal the 

work done during the static elastic deflection of the vibrator into the 

pavement  surface,  is applied to the one-dimensional pavement model. 

This condition gives the connection between the parameters    k       ,    b   , 

and    e    and the corresponding elastic and inelastic pavement parameters. 

In this section the parameters    k       ,    b  , and    e    are calculated for a 

pavement system consisting of a series of layers overlying a subgrade. 
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3.7.1 GENERAL EXPRESSION FOR THE 
PAVEMENT PARAMETERS 

The potential strain energy is calculated using Equations 3.60- 

3.70 and can be put in the form: 

U = U2x2 + U^ + U6x^ (3.71) 

where Up , U, , and U-- are the coefficients of the power series ex- 

pansion of the elastic strain energy. The particular mathematical form 

for the potential strain energy given by Equation 3.71 is chosen in 

order to agree with the form of the work function in Equation 3.50. The 

values of Uo » ^U ♦ an^ ^6 are ^Icul8^6^ ^y substituting the value 

of I    given by Equation 3.70 into the expression QG in Equation 3.60 
2 

and expanding in a power series in x .  The values of U , U^ » and 

U/' will depend on the magnitude of the depth of influence, which is 

determined by &_,£., and £. , and on the v and G values within 

the depth of influence. The coefficients k  , b , and e are ob- 

tained by setting W = U or equivalently 

w2 = u2 

Vh  = Ul* (3.72) 

W6 = U6 

from which it follows that 

k00 = 2U2 

b = hUh (3.73) 

e = 6u6 

The values of    k      ,    b ,  and    e    will depend on    i    ,    I    , and    H,   . 

In the following sections, the general expressions for the param- 

eters    k       ,    b  , and    e    given by Equation 3.73 are evaluated for 

specific cases of layered systems and layered systems overlying a 
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subgrade whose shear modulus increases uniformly with depth. 

3.7.2 ONE ELASTIC LAYER 

For Ä < h , the stress and strain extend only into the upper 

pavement layer. Equations 3.60, 3.6l, and 3.70 give: 

2ira2Q G * 
koo=—T^  (3-710 

h = 1^-2- (3.75) 
go 

6-ne2Ql..G.6y 
e f-^~ (3.76) 

0 

where    6    is the function of .the expansion coefficients of the finite 

depth of influence and 

&=l 7r-\  - "T (3.77) (i) 
The results of Equations 3.7l+-?.77 are valid for the homogeneous half- 

space. 

3.7.3 TWO ELASTIC LAYERS 

For h < & < H , the stress and strain extend into the second 

layer and Equations 3.60, 3.62, and 3.70 give: 

2 
- ^ira 

00 "    I2 
1 [hl(QlGl - Q2G2) + Wo] (3-T8) 

i+TTa2£24' 
b =  -        3 ^(Q^ - Q2G2)  + Q2G2*0J (3.79) 

6ira 
e = — 

0 

-  rph1(Q1G1 - Q2G2)  + 'SQ^QI (3.80) 
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where p is the function of the expansion coefficients of ehe finite 

depth of influence and 

2 

P =  3 
fc)- 

'k 
(3.81) 

Equations  3.78-3.80 reduce to Equations  3.7^-3.76 when    Q G    = Q^G     ,  as 

they should because this condition reproduces the homogeneous half-space. 

S.-J.k    THREE-LAYER SYSTEM AND THE 
GENERALIZATION TO    n    LAYERS 

For the three-layer case with Hp < £ < H corresponding to the 

case where the stress and strain extend into the third layer. Equations 

3.60,  3.63,  and 3.70 give: 

00 
2T<&2y 

0 
[hl(QlGl " Q3G3) + VQ2G2 * SG3) + SVO 

hva2Z ^ i 
b = -  T-Z-h [h1(Q1G1 - Q3G3)  + h2(Q2G2 - Q3G3) 

(3.82) 

+ Q^Q}    (3-83) 

^f[Wl- Q3G3) + h2(Q2G2 - Q3G3)]   + 6Q3G3£0| (3.81») 

The generalization to the case of more than three layers is simple. 

Consider a system of n layers where H n < X, < H  and which corre- 
n-1 n 

sponds to the case in which the finite influence depth extends into the 

n      layer.     For this case the coefficients are 

_  2Tra2f 
'GO 2 

^0 

n-1 

Zh.(Q.G.   - Q G   )   + QG ü 
111        n n Ti n 

b = - 
kta t y 

i=l 

n-1 

Y  h.(Q.C. 
^     111 

Q G   )  + Q G  «.„ 
n n n n 0 

1=1 

(3.85) 

(3.86) 
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e = 6Tra24' 
n-1 

P  %   hi(QiGi - QnGn) + 6QnGn*c 

i=l 

(3.87) 

3.7.5    LAYERED SYSTEM WITH SUBGRADE 

If the n layered pavement overlies a subgrade and Ä > H so 

that the stress and strain extend into the soil medium, then Equations 

3.60 and 3.66-3.70 give 

2TTa2>y 
l00 "    ,2 

Ä0 
i\{^-«)^>\ + e ^Vs5 

2      dz 
i=l 

+ < 
d2(QG  ) 

s s 
2 .2 dz 

(3.88) 

b = - 
hif&2li2^ 

n 

i=l 

+  e 
d^sGs) 

U     dz 

. K, ^%y 
dz' 

(3.89) 

e = 
ÖTTa2* 

d(QsGg) 

I   MVi " «) + <G\ + e6 if 
i=l 

+   K 
^%V 

6   d.2 
(3.90) 

where    e?  ,     e,   ,     £/-  ,    K? ,    K    ,  emd    Kg    are the expansion coeffi- 

cients appearing in the expressions for    k    ,    b   , and    e    and 
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C2 -t^O-  ^ (3.91) 

^'r^o-V (3.92) 

e,  = - 2    0 n (3.93) 

K (3.9U) 

e6 = - ? 6JloHo (3.95) 

K6 = 6 S£0 (3.96) 

For a soil  fonnation by itself,    h.  = 0    and    H    = 0    so that 

2TTa2,y 
00 '    ^0 s s      2       dz 

Äod2(W 
n        6 A   2 
0 dz 

+ . (3.97) 

b = - 
k-na2iJ! 

TO 
no      j dg'Vs' 
s s       b ,2 

dz 
(3.98) 

e  = 
G-na.2^ 500C0 + Vo d  'Vs' 

3    S fa j    tf 
dz 

(3.99) 

where    Q G      depends on the values of    v^   ,  Poisson's ratio for the 
s s s 

subgrade,  and    G      at the soil surface. 
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3.7.6 ALGEBRAIC SIGNS OF THE NON- 
LINEAR PARAMETERS    b    AND    e 

The minus  sign appearing in the expression for the nonlinear co- 

efficient    b    arises from the inverse dependence of    U   on    I .    From 

Equation 3.75 it  follows that    b < 0    for a homogeneous half-space.    For 

a nonhomogeneous half-space, the sign of the coefficient   b   depends on 

the variation of    v    and    G   with depth in the pavement and in the soil. 

Consider first the case where the depth of influence extends only into 

the pavement,    £,  < H    ,  and Equation 3.86 is valid.     Then Equation 3.86 

shows that  if the values of   Q.G.     decrease with depth, as is the gen- 

eral case with pavements, then   b < 0 .     If    Q.G.     increases with depth, 

then    b < 0    or    b > 0   ,  depending on the rate of increase of    Q.G. 

with depth.     If the rate of increase of    Q.G.     with depth is suffi- 

ciently rapid, then there is a possibility that    b > 0 .    The same re- 

sults are valid when the depth of influence extends  into the subgrade. 

Most cases of interest to soil and pavement engineers will have    b < 0  . 

3.7.7 CALCULATION OF THE FINITE DEPTH 
OF INFLUENCE AND THE DETERMINA- 
TION OF LAYER THICKNESS 

It has been shown in Sections 3.7.2-3.7.5 that different  expres- 

sions  for the coefficients    k      ,    b , and    e    must be chosen according 

to the magnitude of the depth of influence,  i.e., depending on the par- 

ticular pavement  layer into which the static depth of influence extends. 

The static  finite depth of influence is expected to depend on the base- 

plate radius of the vibrator and the static  load that the vibrator apr 

plies to the pavement  surface.    Therefore different expressions  for the 

coefficients    knn  ,    b   ,  and    e    must be used if a series of baseplate 

radii are selected for the vibrator.    Equations  3.7^-3.99 show that the 

change in the equations describing    k       ,    b   ,  and    e    occurs when 

Z   = E.   ,  i.e.,  when    Än    passes through the successive interfaces of 

the pavement system.    The values of the baseplate radius for which 

£„= H.    will be  called the critical radii.     Therefore the critical radii 
0 i 

are defined by 
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a0(aci) = Hi (3.100) 

where a , .  a n ....a . are the critical contact radii of the vibra- 
cl *  c2 *   ci 

tor baseplate corresponding to the interface at the depths H. . 
+ Vi 

The zero    -order coefficient,    £n , of the static finite depth of 

influence can be calculated in terms of the radius of the vibrator base- 

plate, the critical radii for the layered system, and the elastic con- 

stants of each layer of the system.    The value of    Ä,n    for a homogeneous 

elastic half-space can be obtained by equating the value of    k..    given 

by Equation 3.7^+ with the value of the spring constant for a linear 

elastic half-space, with the result: 

)l0 = |TTayB (3.101) 

where    B    is a function of Poisson's ratio for the homogeneous half- 

space and is defined by: 

B = ^ : ^ (3'io2) 

Equation 3.101 shows that    l^    is proportional to the radius of the 

contact area of the vibrator which is exerting the static load on the 

surface of the half-space. 

For a layered pavement system,    SL     is given by the following 

expressions: 

£    = | TrYB-ja, 0 <  fc0 < Hl      (3-103) 

iQ = | ir^a + (B1 - B2)acl], 
Hl < £o ' H2      (3'10M 

!^[B3a + (B2-B3)ac2+ ^  - B^J , 

i0 = i ^[Bna + (Bn.1  - Bja^ +  (Bn_2 - B^a^ 

(B1 " B
2
)acl]'  Hn-1 <  ^ < Hn       (3-106) 
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Z0 = f ** B3a + (B2 - B3)ac2 + (B1 - B2)acl  , K2 < ZQ < H,      (3.105) 

+ ... 



■■'■■» 

where the values of B for each pavement layer are given by: 

B. « i1 '  Vi) (3.107) 
1 - 2V. 

and   v    ,    v    ,...v,    are the values of Poisson's ratio for the 1, 2,...i 

layers of the pavement. 

In Section h.l it will be shown that the critical radii of a 

pavement system can be measured experimentally using a mechanical vi- 

brator, so that in principle the function    J!,n(a,a .)    can be evaluated 

The value of the first critical radius is related to the thickness of 

the first layer in the following manner: 

hl ' 2 ^Vcl (3.108) 

In a similar manner it is easy to show from Equations  3.103-3.105 that 

the thicknesses of the second and third layers are given by: 

h2 = |^B2(ac2-acl) (3.109) 

h3 = |^B3(ac3-ac2) (3.110) 

Therefore the thickness of each pavement layer can be determined if the 

values of the critical radii can be measured. 

The values of i^    and £,  can be obtained in terms of the 
2      k 

values of £ , b , and e using Equations 3.75, 3.76, 3.79» 3.80, 

3.83, 3.ÖU, 3.86, 3.87, 3.89, and 3.90. Therefore measurements of b , 

e , and the critical radii are necessary for the complete determination 

of the finite depth of influence. A theoretical calculation of £.. , 

i    ,  and H,     would probably involve either a molecular theory to de- 

scribe the nonlinear behavior of the molecular bonds in AC and PCC or a 

semiempirical nonlinear elastic theory, which has not been considered in 

this report. Numerical values of lQ t    I        and «-  can be obtained 

from measured values of k- , b , and e , provided that the elastic 

constants and the layer thicknesses of the pavement are known. The 
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numerical values of the coefficients    Ä-  ,    £_  , and    £..     that are de- 

scribed in Section h.2.2 were estimated in this manner. 

3.7.8    EFFECT OF BASEPLATE RADIUS 

The coefficients    k 0  ,    b , and    e depend on the following 

quantities: 

a. The elastic parameters v.    and G.    of the pavement layers. 

b. The elastic parameters v      and G      of the subgrade. 

£.    The coefficients    IQ ,    I.  ,  and    A,    , which describe the 
departure from the linear stress-strain constitutive equation. 

The coefficients    Ä.»   ,    Ä,     ,  and    «,,     are functions of the radius of the 

loaded area on the surface,  and therefore    knn  ,    b  , and    e    also de- 

pend on this radius.     The values of   k      ,    b  ,  and    e    can be obtained 

as a function of baseplate radius by combining Equations  3.7^-3.87 with 

the equations giving    £_    as a function of baseplate radius.    The basic 

forms of the parameters    k00  ,    b , and    e    and the dynamic stiffness, 

S , are given in Figures    7,  8, 9» and 10, respectively,   for the cases 

where    QG    decreases with depth (as in pavements) and for the cases 

where    QG    increases with depth.    The measured degree of nonlinearity of 

a pavement-soil system should depend on the radius of the vibrator base- 

plate.    For very large values of the radius,  the slopes of the param- 

eters    knn ,    b   , and    e    with respect to the baseplate radius are de- 

termined by the deeper pavement or soil layers, whereas the values of 

these three parameters are determined by the elastic properties of all 

of the layers which are contained in the depth of influence    l^ .    For 

very small values of the baseplate radius, the slopes of    knf,  ,    b  , and 

e    with respect  to the baseplate radius are determined by the elastic 

properties of the surface and near-surface layers.     The parameters    b 

and    e    are discontinuous functions of the radius of the loaded area; 

the discontinuities occur when    JL    passes through the boundary between 

two layers,  i.e., when    £_ = H.    where    H.     is the total thickness of    i 

layers.    The value of the discontinuities at    £. = H.     are 

Ab = - —— H./Q.G.   - Q.+1G   ,   ) (3.111) 
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^^älli^.^H.^.^^) (3.112) 

The values of the discontinuities in b and e can be positive or 

negative depending on whether QG is a decreasing or an increasing 

function of depth, as indicated in Figures 8 and 9- 

3.7.9 DETERMINATION OF THE SHEAR MOD- 
ULI OF THE PAVEMENT LAYERS 

The shear modulus of each pavement layer can be obtained from the 

values of knn for a series of baseplate radii. Computer programs have 

been developed for calculating the values of kno from the measured 

dynamic load-deflection curves.  Therefore, if dynamic load-deflection 

curves are measured for a series of vibrator baseplate radii, it is 

possible to obtain k   as a function of baseplate radius.  The elastic 

shear modulus of each pavement layer is expressed in terms of v   by 

using Equations 3.7^-3.89 with the result: 

G, = 

G„ = 

C = 

G, = 

Voo(a 

2Tra24'Q1 

) 0 < £0<H1 

1 

. 2iia2» 
- hl\\ Hl 

< £0<H2 VÄo - V 

1 

.   2Tra24' 
- h2Q2G2 - hAGiJ . H2 < i < H 

0         2 
^3V  0 H2) 

1 "£okoo(a) 

.   2Tra2y 
- h3Q3G3 

T 

V*o - v 

"  h2Q2G2 "     hlQlGl 1  » X, > H 
0         3 

(3.113) 

(B.iiM 

(3.115) 

(3.116) 

These expressions for the shear moduli can be expressed in terms of the 

baseplate radius and the critical baseplate radii by using Equations 

3.103-3.110, with the result: 
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(1 - v  ) 
G1 1^—k00(a)  . 0<a<acl        (3.11?) 

(1 - Vo) 1 - v0    a_n      /B •2 

G2 = Ma-aJ «l2(a,k00(a) " 1^7 iTrrJ B ci i        cr j-. 
acl<a^ac2        (3-ll8) 

(1 - Vg) 1 - V3 ac2 - acl /B2\2 p G3 " l>(a - *c?) 03(a)kOO(a)  " 1-^7   a - %2   [rj   G2 

1 - v        a /B   \2 

- 1 - v^ . - »c2 ^ j   Gl • V<aiac3        <3-1«" 

2 
1-v, 1 - v,  a _ - a _/B0\ l-v, 

^ca-'oifefo   .^-^    aci    (fit.       a<. (3.120) 

where    0:,(a)   ,    0o(a)   ,  and    02,(a)    are functions of the baseplate 

radius and Poisson's ratio of the successive pavement layers.     These 

functions are given by 

¥a) = (1 + "4r^ TV (3-l2l) 

/ B0 - B_ a  .      B-  - B0 a n\
c 

¥a)-   ^-V-^^T-^-T <3-^' 

^.^^^.^^.^^r,,^ 
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Therefore the values of the shear modulus of each layer of the 

pavement system can be calculated if the values of Poisson's ratio are 

assumed to be known for each pavement layer and if the function knn(a) 

is known for a series of values of the baseplate radius. This series 

must include a baseplate radius sufficiently large to make the static 

finite depth of influence penetrate into the deepest layer whose shear 

modulus is to be determined. The function ^.-.(a) can be obtained 

from measured values of the dynamic stiffness S(a,F ,F ) . The shear 

modulus of the subgrade can be determined by this method if a suffi- 

ciently large vibrator baseplate is used.  It is clear also from Equa- 

tions 3.97-3-99 that this method is also applicable to soil formations 

and may prove to be a useful method of shallow r -.bsurface geophysical 

exploration. 

The unique feature of this method of determining the variation 

of the shear modulus with depth is the one-to-one correspondence between 

the vibrator baseplate radius and the finite depth of influence in the 

pavement. Each pavement layer can be detected individually by choosing 

a proper baseplate size. This one-to-one correspondence does not exist 

in the wave propagation method of determining subsurface structure, be- 

cause in this case a single point on a measured Rayleigh wave dispersion 

curve is influenced by the values of the shear modulus at all depths be- 

neath the surface. 

The basic purpose of applying pavement layers over a subgrade is 

to distribute the load which is applied to the pavement surface in such 

a way as to protect the comparatively weak subgrade. A measure of the 

load distribution characteristics of a pavement is given by the angle of 

the frustum of the cone in which the strain (and stress) in the pave- 

ment system is assumed to be confined. This angle is shown in Figure 5 

and is defined as follows: 

where 0n is the angle of stress distribution. For a homogeneous elas- 

tic half-space this angle is given by 
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.    ^ TIB(1 + K + K   ) /-, ,«^\ 
tan0D 6(K-1)     ^ (3-125) 

Similar expressions for the layered pav jment  system can be obtained by 

using Equations 3.10l*-3.106.     For the homogeneous elastic half-space, 

0D    is independent of the baseplate radius; but for layered systems, 

this angle doey depend somewhat on the baseplate radius.    The values of 

K    are determined experimentally by requiring that Equations  3.108-3.110 

correctly predict the pavement layer thicknesses.    This requirement 

gives a value of    f    from which the value of    K    is immediately obtained 

by using Equation 3.52.    A typical value of    0D    for pavements  is 

0D « 70 deg. 

3.8    EFFECTS OF THE MECHANICAL CHARAC- 
TERISTICS OF THE VIBRATOR ON THE 
MEASURED VALUE3 OF DYNAMIC  STIFFNESS 

3.8.1    VIBRATOR AND PAVEMENT PARAMETERS 
INFLUENCING THE DYNAMIC STIFFNESS 

The dynamic stiffness of a pavement is measured by using a me- 

chanical vibrator to determine the load-deflection curves.     The  shape 

of these curves  depends on the values of the nonlinear parameters     b 

and    e   .     The experimental results of Section h.l and the theoretical 

results  of Section 3.5 indicate  that  the nonlinear parameters    b    and    e 

are not   zero  for pavements.     In this  ease.   Equations  3.22-3.28  show that 

in addition to the quantities listed in Section 2.1* pertaining to the 

linear oscillator,  the dynamic  stiffness of a pavement measured by  a 

vibrator also depends on the  following quantities: 

a^.     Two nonlinear elastic  parameters  describing the pavement. 

b.     The static load (or  static  equilibrium displacement). 

c_.     The dynamic  force  generated by the vibrator. 

ci.     The baseplate radius  of the vibrator. 

Because  various  vibrators have  different  voiues of    F      and    F,^   ,   jt 
s       D 

follows that the dynamic stiffness value measured by different vibrators 

at the same locality will in general be different. The dynamic stiff- 

ness measured by a vibrator thus depends on the physical onaracterist".cs 

of the vibrator used for the measurements.  For flexible pavement it is 
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in part the dependence of the dynamic stiffness on F  that produces 

the discrepancy in the measured values of dynamic stiffness using two 

different vibrators with different values of F  at the same pavement 

location. All other factors being equal, two vibrators operating at 

different levels of dynamic force will not yield the same value of dy- 

namic stiffness. The lower value will occur in the region of large 

dynamic load. 

3.8.2 THEORY OF THE ANOMALOUS BEHAVIOR 
OF THE DYNAMIC STIFFNESS 

The spring constant expression shows that the linear theory of 

elasticity implies a value of the dynamic stiffness which is essentially 

proportional to the baseplate radius of the vibrator mass. Experimental 

results presented in Section h.l  contradict this basic conclusion of 

linear elasticity. Some of the experimental data in Section h.l  indi- 

cate that for the same vibrator (same static and dynamic loads), the 

measured values of dynamic stiffness are roughly independent of base- 

plate radius. In fact, some of the data in Section h.l  show that for 

different vibrators (different static loads), it is sometimes possible 

to measure smaller values of the dynamic stiffness with a large base- 

plate than with a small baseplate at the same location.  This conflict 

between the experimental results and the predictions of linear elastic 

theory will be referred to as the anomalous behavior of the dynamic 

stiffness. 

The anomalous behavior of the dynamic stiffness can be explained 

in terms of the nonlinear response of a pavement to a static and dynamic 

load.  The anomalous result, that the dynamic stiffness does not appear 

to vary directly with the radius of the baseplate (as it does for a 

linear homogeneous half-space), is due to the finite depth of influence 

which makes k n only a very slowly increasing function of baseplate 

radius except for really small radii (see Figure 7a).  This is espe- 

cially true for the case of a concrete pavement where a very strong 

upper layer overlies considerably weaker layers of base and subbase.  In 

this case, the value of k.  is determined primarily by the strong 

upper layer, and the major part of this value can be obtained with a 
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very small baseplate radius as shown in Figure 7a.    The weaker lower 

layers tend to flatten out the    k-.-versus-baseplate-radius curve. 

Thus, measurements of    k00   using different sized baseplates would yield 

values of   k-.    considerably less different than they would be if the 

pavement were a homogeneous half-space with elastic parameters equal to 

those of the upper layer of the layered system.    According to the non- 

linear theory,    k00   is a very slowly increasing function of baseplate 

radius for baseplate radii larger than the first critical radius.    There- 

fore, for sufficiently large baseplate radii, the values of dynamic 

stiffness of rigid pavements measured for fixed static and dynamic loads 

should be essentially independent of the baseplate radius. 

The fact that the values of    knn    are similar for different base- 

plate radii which are sufficiently large implies that the values of two 

k  (F  ,a)    functions corresponding to two different baseplate sizes are 

also similar for some pavements.     In this case it is possible, due to a 

local minimum of the function    k-(F  ,a)    for some value of    F    ,  for 
0 s' s ' 

k (F ,a) for a small baseplate radius and small static load to be 

larger than kn(F ,a) for a large radius and a large static load as 

shown in the rigid pavement curve in Figure h&.    If the values of kn 

are very different for two baseplate radii, the corresponding two values 

of the function k (F ,a) will also be very different. In particular, 
u s 

the function kn(F ,a)  for the larger radius will be larger than the 

corresponding function for the smaller radius for all values of F , as 
s 

shown in the flexible pavement curves of Figure ha.     This case would 

then represent the normal situation in which large baseplates produce 

slightly larger values of dynamic stiffness than do smaller baseplates. 

This normal situation is expected to occur for weak pavements where 

there is not a great difference between the  elastic parameters of the 

upper and lower pavement layers.    The anomalous behavior of the dynamic 

stiffness measurements on pavements can be explained in terms of the 

relative constancy of the function    knn(a)   , which implies that the 

values of the dynamic  stiffness measured on rigid pavements by vibrators 

with large and small baseplates will be roughly the same.    On the other 

hand, linear elastic theory implies that the value of the dynamic 
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stiffness should be directly proportional to the baseplate radius. The 

experimental results, then, contradict some of the predictions of the 

linear elastic theory. 
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1». EVALUATION OF THEORETICAL RESULTS OF THE 
DYNAMIC STIFFNESS STUDY 

l*.l EXPERIMENTAL PROGRAM 

The basic goal of the experimental program was to provide data 

to establish the use of the nondestructive evaluation method for airport 

pavements. Nondestructive pavement evaluation methodology based on cor- 

relations between nondestructive data and existing Federal Aviation Ad- 

ministration evaluation criteria is given in Volume I of this report. 

The specific objectives of the experimental program were: 

a. Determination of the dynamic stiffness as a function of fre- 
quency, dynamic load, static load, and vibrator baseplate 
radius. 

b. Validation of the theoretical procedures and predictions of 
the nonlinear mechanical model of pavements. 

k.1.1    MECHANICAL VIBRATORS USED FOR 
NONDESTRUCTIVE TESTING OF 
PAVEMENTS 

Dynamic stiffness data were obtained from several vibrators 

including: 

a. The WES l6-kip hydraulic vibrator 

b. The Dynaflect 

£. The Road Rater 

d. The Civil Engineering Research Facility (CERF) vibrator 

e_. The WES 9-kip eccentric mass vibrator 

Each vibrator has its own basic dynamic characteristics including weight, 

maximum dynamic force, ajid baseplate radius. A comparison of these four 

vibrators is made in Table 1, According to the nonlinear vibration 

theory of pavements developed in Section 3.5, the dynamic characteris- 

tics of a vibrator will be reflected in the value of the dynamic 

stiffness measured on a given pavement. 

The experimental measurements of the dynamic load-deflection 

curves measured by WES were made primarily at a frequency of 15 Hz, but 

also in the range of 10-25 Hz. Most of the data taken were for a static 

load of l6 kips and for a dynamic load which varied from 5-1^ kips. 

Some dynamic stiffness measurements were performed using a different 
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Table 1 

Mechanical Characteristics of Vibrators 

Vibrator 

WES 16-kip 

Dynaflect 

Static 
Load 

16 

1.6 

Maximum 
Dynamic Load 

kips 

15 

0.5 

Effective 
Baseplate 

Radius« in. 

*0.9 (concrete)* 

^3.2  (asphaltic 
concrete 

Contact 
Area 
pa in. 

2^5 

2.5i* 

32.0 

Operating 
Frequency 

Hz 

5-100 

8 

Road Rater 

koo 1.5 0.75 20-30 

505 1.5 0.75 It. 22*« 56 20-30 

510 2.0 1.5 10-1+0 

550 h.O 3.0 IO-UO 

CERF 6.75 5 6 113.1 15,25 

WES 9-kip 9 8 9.5 283.5 5-60 

* Road Rater applies load through two k-  by 7-in. rectangular steel 
pads spaced 6 in. apart. 

** Dynaflect applies load through two k-in.  wide and l6-in.-diam steel 
wheels. 
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vibrator arrangement which allowed for a variation of the static load 

in the range of 5-50 kips by the addition of a series of lead weights 

to the vibrator load. 

It. 1.2 EFFECTS OF DYNAMIC LOAD 

Typical dynamic load-deflection curves for AC pavements appear 

in Figure 11, while Figure 12 gives these curves for FCC pavements. 

These load-deflection curves correspond to a frequency of 15 Hz and a 

static load of l6 kips. The dynamic stiffness is the ratio of the dy- 

namic load to the corresponding value of the dynamic deflection, and can 

be evaluated for each point on the dynamic load-deflection curve. The 

value of the dynamic stiffness corresponding to F_= 0 has been desig- 

nated by S  in Equation 3.21 and can be obtained from Figures 11 and 

12 by measuring the slope of the load-deflection curves at the origin. 

The dynamic stiffness values corresponding to the dynamic load- 

deflection curves presented in Figures 11 and 12 are given in Figures 

13a and b. For the WES l6-kip vibrator operating on AC pavements, the 

dynamic stiffness is generally a decreasing function of the dynamic load, 

while for rigid pavements the dynamic stiffness is essentially indepen- 

dent of the dynamic load. However, the 10-Hz dynamic load-deflection 

curves shown in Figure ih  indicate that it is possible under certain 

conditions for the dynamic stiffness to be an increasing function of the 

dynamic load and to have a local minimum value at a specific value of 

the dynamic load. The results in Figures 11 and 12 show that stiff 

pavements have dynamic load-deflection curves which are more linear than 

the dynamic load-deflection curves for the more flexible pavements. 

1+.1.3 CRITICAL FREQUENCIES 

The dynamic load-deflection curves for a given pavement have been 

measured for a series of frequencies, from which an estimate of the 

critical frequency for a vibrator-pavement system can be made. The 

critical frequency has been defined as the frequency for which the dy- 

namic load-deflection curves are nearly linear for small values of F . 

Figures 1^ and 15 indicate that the critical frequency of the WES l6-kip 

vibrator operating on medium strength AC pavements is about 15.5 Hz, 
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while other data indicate that for PCC pavements it is about ll*.5 Hz. 

Estimates of the critical frequency, resonance frequency, effective 

pavement mass, and damping constant that were obtained from the experi- 

mental dynamic load deflection curves for rigid and flexible pavements 

eure given in the following tabulation. 

Pavement 
Type 

Critical 
Frequency 

Hz 

Resonance 
Frequency 

Hz 

Damping 
Constant 
kip-sec/ 

in. 

Effectj 
Pavement 

kip-sec 
in. 

ve 
Mass 

:
2/ 

Vibrator 
Mass 

kip-sec2/ 
in. 

Rigid 
concrete 
pavement 

Flexible AC 
pavement 

lit. 5 

15.5 

10 

8 

35 

8 

1.0 

0.33 

0.01+2 

0.0U2 

lt. 1.1+ EFFECT OF STATIC LOADS 

Some experimental work has been done at WES toward determining 

the dependence of the dynamic load-deflection curves and the dynamic 

stiffness of a pavement-vibrator system on the static load applied to 

the pavement. The static load was applied to an AC pavement by a hy- 

draulic system that could apply a static load of 5-50 kips.  The vibra- 

tor was run at 15 Hz for all of the tests. Dynamic load-deflection 

curves were measured for a series of static loads that was started at 

5 kips and incremented by adding 5-kip lead weights to the vibrator 

system until a maximum static load of 50 kips was attained.  The maxi- 

mum value of the dynamic load for the case of the 5-kip static load was 

It kips, while the maximum dynamic load for the case of the 50-kip static 

load was only 10 kips. Therefore, for these experimental tests the max- 

imum value of the dynamic load was considerably less than the value of 

the static load for which dynamic load-deflection curves were measured. 

Figure 16 gives the measured dynamic load-deflection curves for several 

values of the static load, while Figures 17 and 18 show the dependence 

of the dynamic stiffness on the static and dynamic loads, respectively. 

The experimental data show that the dynamic stiffness is greatly depen- 

dent on the static and dynamic loads, and therefore the dynamic 
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stiffness is as much a property of the dynamic characteristics of a vi- 

brator as it is of the strength of the pavement.    The experimental data 

in Figure l6 show that the dynamic stiffness measured by a vibrator 

tends to increase with the magnitude of the applied static load.    The 

results in Figure 16 also show that the measured dynamic load-deflection 

curves tend to become more linear with increasing static load.    The 

latter experimental conclusion can be presented only tentatively because 

the range of the variation of the dynamic load for the experimental 

tests done with the 50-kip .-'.,-■:..•   -wad was only 0-10 kips.    The range 

of the dynamic load should hurve been 0~k0 kips in order to make a proper 

comparison with the experimental tests done with the 5-kip static load 

for which the dynamic load was varied from 0-h kips. 

Figure IT shows that for the experimental setup used, the dynamic 

stiffness may exhibit a minimum value for    F    ~ 5 kips, but further 
s 

tests are required to substantiate this conclusion.    The results in 

Figure 18 show that for the experimental setup used, which has    w < w 

and    F    < F        as operating conditions, there appear to be local minima 

in the dynamic stiffness as a function of    FD    in the range    FD ~ 3-^ 

kips for the WES 50-kip variable static load vibrator operating on AC. 

I*. 1.5    EFFECT OF BASEPLATE RADIUS 

Experimental work has been done at WES to determine the dependence 

of the measured values of the dynamic stiffness on the size of the vi- 

brator baseplate.    This experimental work was done in part to confirm 

the results in Section 3.T.8 regarding  .^he dependence of the theoreti- 

cally calculated dynamic stiffness on the baseplate radius of the 

vibrator.    The experimental work was also clone to establish the exis- 

tence of the critical radii  (Section 3.7-7) and to determine their 

values for a particular pavement location so that the formulas for cal- 

culating the layer thicknesses  (Section 3.7-7)  and shear modulus of each 

pavement layer  (Section 3-7-9) could be verified. 

Experimental measurements of the dynamic load-deflection curves 

were made for baseplates having diameters of 3, ^, 5, 6, 7, 8,  9,  10, 

12, 15, and 18 in.    All of the baseplate jizes were used for the tests 
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on rigid pavements; but for the tests on AC pavements, the 3-, k-t and 

5-in.-diam plates could not be used because the pavement failed by 

shearing under the l6-kip static load of the vibrator.    Figure 19 gives 

the experimental dynamic load-deflection curves for AC while Figure 20 

gives the curves for the case of a rigid pavement.    For the rigid pave- 

ment, the load-deflection curves for the 5-in.-diam and larger baseplate 

sizes are very similar, so that only the load-deflection curves for the 

5- and l8-in.-diam baseplates are shown in Figure 20.    Figure 21 gives 

the experimental values for the dynamic stiffness of rigid and AC pave- 

ments as a function of the baseplate radius.    Figure 21 shows that an 

abrupt change  in the slope of the curve giving dynamic stiffness versus 

baseplate radius occurs at a radius of 2.5 in.   for the case of the rigid 

pavement, and at a radius of 6.0 in.   for the AC pavement.    The rigid 

pavement is known to have a thickness of 15 in.,  while the AC pavement 

is known to rest on a subgrade the top of which is at a depth of from 

28 in.  to k2 in. 

It. 1.6    COMPARISON OF DYNAMIC STIFFNESS 
VALUES MEASURED BY THE DYNAFLECT 
AND THE WES l6-KIP VIBRATOR 

A comparison of the dynamic stiffness values determined by the 

WES l6-kip vibrator and by the Dynaflect vibrator on concrete pavements 

at the same locations is given in Table 2.     Table  2 shows that the  stiff- 

ness values determined by the Dynaflect are  considerably higher than 

those obtained at the same locations using the WES l6-kip vibrator,  even 

though the radius of the WES vibrator  is about an  order of magnitude 

larger than the equivalent radius of the Dynaflect operating on a con- 

crete pavement  (anomalous behavior).     The WES l6-kip vibrator has a 

baseplate area of 2U5 sq in.    The Dynaflect vibrator makes contact  with 

a pavement through two steel wheels,  each having  a width of h  in.   and a 

diameter of l6 in. ,   and therefore the contact area with the pavement 

varies with the degree of softness of the pavement,  being considerably 

larger for soft asphaltic pavements  than  for hard concrete pavements. 

The frequency of operation of the Dynaflect  is 8  Hz while that of the 

WES l6-kip vibrator is l6 Hz.     The maximum dynamic  load of the Dynaflect 
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is 0.5 kips and the static load Is 1.5 kips, while the maximum dynamic 

load of the WES l6-klp vibrator is 15 kips with a static load of 16 kips. 

The comparatively small size of the Dynaflect is thought to be responsi- 

ble for the difference between values of the dynamic stiffness measured 

by the two vibrators at the same pavement location.    Volume I of this 

report      gives a complete description of these two vibrators. 

k.1.1 COMPARISON OF DYNAMIC STIFF- 
NESS VALUES MEASURED BY ROAD 
RATER AND WES l6-KIP VIBRATOR 

For the same locations, dynamic stiffness measurements were made 

using the Road Rater and the WES l6-kip vibrator.    Measurements were 

made on both concrete and AC pavements, and the results are tabulated 

in Table 3.    As with the Dynaflect, it was found that the Road Rater 

generally gives higher values of dynamic stiffness than does the WES 

l6-kip machine at the same locations.    This  is true even though the WES 

l6-kip vibrator has a baseplate radius about 2.5 times larger than the 

baseplate radius of the Road Rater (anomalous behavior).    The Road Rater 

and the WES l6-kip vibrator have different mechanical characteristics, 

and this difference  is probably responsible for the difference in the 

measured values of the dynamic stiffness at the same pavement location. 

The Road Rater is generally operated in the frequency range of 10-it0 Hz 

and has a maximum dynamic load in the range of 1.0 kip and a static load 

in the range of 3.0 kips, values which are considerably smaller than the 

corresponding values for the WES l6-kip vibrator.     The Road Rater is 

described in more detail in Volume I of this report. 

k.l.B COMPARISON OF DYNAMIC STIFF- 
NESS VALUES MEASURED BY CERF 
VIBRATOR AND WES 16-KIP VIBRATOR 

Table k gives the values of the dynamic stiffness measured at the 

same locations by the CERF vibrator and the WES l6-kip vibrator.     ' 

The CERF vibrator measures lower values of dynamic stiffness than does 

the WES vibrator.     This behavior of the dynamic stiffness is in accor- 

dance with the larger baseplate contact radius of the WES vibrator 

(normal behavior).     The CERF vibrator is more comparable  in size with 
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Table 3 

Comparison of Dynamic Stiffness Values Measured by the 

Road Rater and by the WES l6-Kip Vibrator 

(Flexible Pavements) 

, 

WES Soil 
Test 

Stabilis 
Sections 

nation 
5 

National Aviation 
Experimental ( 

Facilities 
Center 

WES 16-Kip Vibrator 
kips/in. 

Road Rater 
kips/in. 

1010 

WES 16-Kip Vibrator 
kips/in. 

Road Rater 
kips/in. 

680 3120 1*878 

1260 20U0 2720 3279 

700 653 2920 1*000 

880 653 11U0 1220 

760 1538 21*00 271*0 

720 531 2960 5000 

2920 381*6 21+60 3077 

2200 k3kl 980 960 

720 1265 980 900 

800 1123 980 900 

1*00 266 880 862 

520 632 880 833 

700 81*0 880 1087 

1560 1176 730 909 

I960 2000 900 1087 

3hU0 3125 900 1020 

— — 600 633 

— — 600 580 

•... ._ 600 667 
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Table k 

Comparison of Typical Dynamic Stiffness Values as Measured 

by the CERF Vibrator and by the WES l6-Kip Vibrator 

Webb Air Force Base Kelly Air Force Base 
(Flexible Pavement) (Concrete Pavement) 

WES 16-Kip Vibrator CERF Vibrator WES 16-Kip Vibrator CERF Vibrator 
kips/in. kips/in. kips/in. kips/in. 

800 680 kkoo 2725 
91+0 861 5520 3862 
880 783 5kk0 3026 
760 576 1+61*0 2085 
T80 696 581+0 2627 

, 660 587 51+1+0 2875 
760 728 1*01+0 1957 
71*0 67»+ 5520 2358 
880 779 9200 1+895 
600 553 1+080 2890 

780 71*6 1*920 2171+ 
760 645 1*920 3650 
820 657 5600 1*000 
780 708 1+360 31+97 
780 698 1+560 3129 

6I10 611 2080 181*3 
760 636 1+800 3109 
720 723 3880 2909 
660 661+ 161*0   • 1583 
960 803 1*1*1*0 2171+ 

mo 775 1*520 3030 
700 1+69 1*01*0 3576 
600 . 503 — — 
720 1*78 — — 
660 452 - - — 
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the WES l6-kip vibrator than is either the Dynaflect or the Road Rater. 

The CERF vibrator is operated in the frequency range of 5-60 Hz and has 

a maximum dynamic load of 8 kips and a static load of 9 kips. The CERF 

vibrator is described in more detail in Volume I of this report. 

U.2    COMPARISON OF THEORETICAL AND 
EXPERIMENTAL RESULTS FOR THE 
DYNAMIC STIFFNESS 

i*.2.1    DEGREE OF NONLINEARITY 

The experimental dynamic load-deflection curves presented in 

Figures 11 and 12 show that a flexible pavement having a small dynamic 

stiffness is more nonlinear than a rigid pavement with a large dynamic 

stiffness.    This experimental fact is explained in the selected model by 

the first nonlinear term in Equation 3.22, which depends on the dynamic 
-1+ stiffness in the manner    S      ,  so that the theory predicts that stiff 

pavements can be expected to be more linear than flexible pavements. 

It has been shown theoretically that for the case when    oi < u 

and    F    < F      ,  for which    a    > 0    in Equations 3.25,   3.31,  and 3.35, 

the oynamic load-deflection curves have a shape such that the dynamic 

stiffness is a decreasing function of   Fn    in the range of low values 

of    F    .    For large values of    F    , the dynamic stiffness may continue 

to be a decreasing function of    F      or may obtain a minimum value and 

then begin to increase with further increase of the values of    F^ .    A 

minimum value for the dynamic stiffness may or may not exist depending 

on the relative values of the nonlinear parameters    b    and    e  .    Fig- 

ures 11 and 13 give casei for which    a    > 0    and for which the dynamic 

stiffness is a monotonic decreasing function of dynamic load, while 

Figures ik and 18 show cases for which   a    > 0    and for which a minimum 

occurs in the value of the dynamic stiffness at a given value of 

F    * k,0 kips.    For the WES l6-kip vibrator operated at a frequency of 

15 Hz, it is found that the flexible AC pavements generally have dynamic 

load deflection curves for which    a    > 0  . 

It has also been shown theoretically that for the case when 

u) > a)     and    F    > F       ,  for which    a    < 0    in Equations 3.25, 3.31, and 
C S SC X 
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3.35. the dynamic stiffness is an increasing function of the dynamic 

lead in the region of low dynamic load.    The UO-Hz curve in Figure Ik 

way indicate this behavior with   a1 < 0 .    Further experimental veri- 

fication is necessary. 

One of the conclusions of Equation 3.31 is that the dynamic load- 

deflection curves measured by a vibrator will become essentially linear 

in the region of small    F_    if the vibrator is operated at a character- 

istic frequency of the vibrator-pavement system which is called the 

critical frequency.    The existence of the critical frequency is sug- 

gested by the experimental results in Figures 1^ and 15; however,  fur- 

ther experimental results on this question are needed.     Figures 16 and 

17 show conclusively that the dynamic load-deflection curves and the 

dynamic  stiffness depend on the static load present during measurements. 

Although these curves suggest that the dynamic stiffness attains a min- 

imum value for a certain value of the static load,  it cannot be said 

that this result has been definitely verified experimentally and further 

tests are necessary. 

it.2.2    DETERMINATION OF THE PARAM- 
ETERS    k.-  ,    b  , and    e 

Only a limited amount of numerical analysis hag been done toward 

extracting the parameters    k       ,    b  ,    e ,    i^  ,    Ä?  » and    ^k    ^rom the 

aforementioned experimental data.    These parameters depend on the radius 

of the vibrator baseplate and on the elastic parameters    v    and    G    of 

the pavement-soil system.    Therefore, the measured values of these param- 

eters will depend on the type of vibrator used to make the measurements 

as well as on the elastic parameters of the pavement-soil  system. 

The parameters    k n  ,    b , and   e    can be obtained by two methods: 

a.    If the dynamic load-deflection curves are sufficientj.y curved 
so as to allow the direct application of a curve-fit program 
as in the case of asphalt and weak concrete pavements», 
the parameters    kgo  »    b  , and   e    can be obtained directly 
from the load-deflection curves.    A least-square polynomial 
fit program was developed which fits the dynamic load- 
deflection curves with an odd polynomial containing fifth-, 
third-, and first-order terms.    This fitting procedure immedi- 
ately determines    a    ,^a^  , and   S      that appear in 
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Equation 3.22.     The value of   kg    is then obtained from    SQ 

by using Equation 3.21 and appropriate values for the pave- 
ment mass and damping constant.    Placing the values of    a^  , 
ag »    SQ  , and    kg    into Equations 3.25 and 3.26 immediately 
gives the values of    b    and    e  .    The values of    kQQ    and    x 
are then obtained from a simultaneous solution of Equations 
3.1+ and 3.15. 

b.    The dynamic load-deflection curves for very rigid pavements 
are essentially straight lines.    The dynamic  load-deflection 
curves are measured for a series of static loads by using a 
vibrator with a variable static force.    The dynamic stiffness 
is determined from the slope of the dynamic load-deflection 
curves.    Because the slope is essentially independent of the 
dynamic load,  it follows  from Equation 3.23 that 
S * So(w,F  )   ,  so that the measured dynamic  stiffness value 
immediately determines    Sg(a),Fs)  .    The function    kQ(Fs)    is 
then determined from    So(w,Fs)    by using Equation  3.21.     The 
function    kQ(Fs)    is then fitted to the expression in Equa- 
tion 3.15 after    xe    has been expressed in terms of   Fs    by 
using Equation  3.2.     This  fitting procedure determines    k.-   , , , uu b , and    e  . 

Method a can be used for those pavements which have dynamic load- 

deflection curves that are sufficiently curved to be able to obtain 

a     ,    a     ,  and    S      directly from a least-squares program.     This  is  not 
i. c U 

generally the case for very strong PCC pavements.    For very rigid pave- 
i 

ments, method b should be  used because the dynamic load-deflection 

curves are essentially  straight  lines.     Computer programs have been 

developed which calculate the parameters    k      ,     b  ,  and    e    directly 

from the measured dynamic  load deflection curves  using method  a.     No nu- 
i 

merical work has been done  applying method b to the rigid pavement. 
j 

Figures  22,  23, and 2k give the values of    k       ,    b   ,  and    e   ,  respec- 

tively,  that were determined by method a from the measured dynamic load- 

deflection curves   for a series  of baseplate radii.     The  existence  of the 

first critical radius  can be established from the abrupt  change in slope 

of the  function    k    (a)     for    a = a ,   .    Method  a wai; applied  to the dy- 

namic load-deflection curves  of a rigid pavement  and a  flexible pavement. 

The considerable scatter in the  results  for    b    and    e     for the rigid 

and flexible pavements probably  reflects the difficulty  of determining 

the curvature of the dynamic  load-deflection curves  which may  contain 

some experimental error.     The  large  scatter in the experimentally 
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derived values of the parameters    b    and   e   probably means that only 

the experimentally derived values of   k00   for a series of baseplate 

sizes will be useful for calculating pavement structure. 

The values of    lQ   can be calculated from Equations 3.103-3.107 

provided the Poisson's ratio of each layer of the pavement system is 

known and provided the values of the critical radii are known.    The 

values of   i-    and    Ä,     can be obtained in terms of the values of   b 

and    e    given in Sections 3.7.2-3.7.5. '    /ided the shear modulus and 

layer thickness are known for each lay^i. contained within the static 

finite depth of influence.    The experimental values of    Än ,    Ä    , and 

£,     appear In Figures 25, 26, and 27, respectively.    The results in 

Figure 25 show that    Ä.-    is larger for rigid than for flexible pave- 

ments.    The large scatter in the values of   i^    and    ix    are probably 

due to experimental variations in the curvature of the dynamic load- 

deflection curves.    Typical values of   k 0 ,    b ,    e  ,    Ä0 ,    Ä.p , and 

Ä.     for the WES l6-kip vibrator with an l8-in.-diam baseplate are given 

in Table 5. 

it.2. 3    DETERMINATION OF THE SHEAR 
MODULI AND THICKNESSES OF 
PAVEMENT LAYERS 

The thickness of each pavement layer can be determined using 

Equations 3.108-3.110,  and the shear modulus of each layer can be de- 

termined by using Equations 3.117-3.123.    These equations require Pois- 

son's ratio of each pavoment layer, the critical radii, and the function 

k n(a)    as input variables.    The critical radii are determined by measur- 

ing the dynamic load-deflection curves for a series of baseplate sizes 

and noting the particular values of the baseplate radius at which abrupt 

changes occur in the slope of the curve showing dynamic stiffness versus 

baseplate radius.    The critical radii can also be obtained by noting the 

values of the baseplate radius at which abrupt changes in the slope of 

kon(a)    occur.    Table 6 gives the values of critical radii, layer thick- 

nesses, and shear moduli corresponding to the experimental data shown in 

Figure 21.    Only the first critical radius was measured experimentally 

for the rigid pavement, and only the second critical radius was observed 
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Table 5 

Approximate Numerical Values of the Parameters 

Appearing in the Nonlinear Pavement Model 

(WES 16-Kip Vibrator) 

Parameter 

«  b 

e 

ConeretQ Pavement 

8.0 x 10° lb/in. 

-1+.0 x io9 lb/in.3 

2.0 x IO1^ lb/in.5 

200 in. 

1.0 x io5 in."1 

10   -"? -3.0 x ioxu in. ^ 

Asphaltic Concrete Pavement 

2.0 x io6 lb/in. 

-1.3 x io9 lb/in.3 

1+.0 x io12 lb/in.5 

72 in. 

h        -1 
2.0 x io in. 

-3.5 x 107 in.-3 
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Table 6 

Experimental Values of the Parameters Describing 

the Subsurface Structure of Pavements 

at the WES Test Area 

Parameter 

First critical radius,    a cl 

c2 Second critical radius,    a 

Thickness of pavement,    h.. 

Poisson's ratio,    v 

Shear modulus,    G 

Compression modulus,    E 

Volume factor of the frustum 
of cone of stress,    V 

Ratio of radii of frustum 
of cone of stress,    ic 

Rigid Pavement 

2.5 in. 

Not measured 

15.0 in. 

0.25 

2.U x io6 psi 

6.0 x io psi 

3.8 

2.8 

Flexible Pavement 

Not measured 

6.0 in. 

33.0 in. 

0.35 

3.7 x KT psi 

1.0 x io5 psi 

3.8 

2.8 
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for the flexible pavement.    The determination of the thickness of a thin 

upper layer of a rigid or flexible pavement requires the use of very 

small baseplate sizes.    The shear failure of the flexible pavement 

prevented any tests using the WES-16 kip vibrator for a baseplate whose 

diameter was smaller than 3 in., and this prevented the measurement of 

the first critical radius for the flexible pavement at the WES test 

section. 

The experimental data presented in Section U.1.5 generally tend 

to confirm the existence of the critical radii that were introduced in 

Section 3.7.7.    For the case of the rigid pavement shown in Figure 21, 

the abrupt change in the slope of the dynamic stiffness function for a 

baseplate radius of 2.5 in.  is interpreted to mean that the value of the 

critical radius is 2.5 in.    For this value of the baseplate radius, the 

zero      term of the finite depth of influence,    Än ,  as defined by Equa- 

tions 3.103 and 3.108, is equal to the depth of the first interface 

which in this case is 15 in.    The condition   ln = 15 in.    Combined 

with Equations 3-52,  3.103, and 3.108 give the values of    ¥    and    K    that 

appear In Table 6.    The shear modulus of the upper pavement layer is 

calculated from the slope of the experimentally derived function    k    (a) 

that appears in Figure 22 by using Equation 3.117. 

k.2.k    ANOMALOUS VALUES OF DYNAMIC 
STIFFNESS 

The difference In the values of the dynamic stiffness measured by 

the Dynaflect, Road Rater, CERF vibrator, and the WES l6-kip vibrator at 

the same pavement location is thought to be due to the different base- 

plate size,  static load, and dynamic load used by these vibrators.     The 

difference in the values of the measured dynamic stiffness can be con- 

siderable as has been described in Sections i*.1.6-4.1.8 and in Tables 2- 

k.     The nonlinear mechanical model of the dynamic response of pavements 

to surface loads that was developed in Section 3 implies that the mea- 

sured values of dynamic stiffness should depend on the baseplate radius, 

static load, and dynamic load of the vibrator that is used to make these 

measurements.    This nonlinear mechanlccLi model should be sufficient to 

correlate the different values of dynamic stiffness measured by 

100 

I''...,- 1*.  üüliU/iiLSMlLiUlt 



different sized vibrators at the same pavement location.    However, no 

numerical studies of this correlation have been performed, and only 

qualitative results will be described. 

Dynamic stiffness measurements were made at the same location 

using different vibrators in order to determine further the dependence 

of the measured values of the dynamic stiffness on the type of vibrator 

used to make the measurements.    These measurements produced the unusual 

result that under some circumstances it is possible at the same pavement 

site to measure a larger value of dynamic stiffness with a small base- 

plate than with a large baseplate (Sections l+.l.S-U.l.lO and Tables U-6). 

The nonlinear pavement model that was developed in Sections 3.5-3.8 at- 

tempts to explain these anomalous experimental results for the dynamic 

stiffness measurements. 

For flexible pavements, a small part of the discrepancy between 

the values of dynamic stiffness measured by the WES l6-kip vibrator and 

those measured by the Dynaflect, Road Rater, and CERF vibrators at the 

same location is due to the fact that the values of dynamic stiffness 

presented for the WES l6-kip vibrator in Volume I of this report      were 

determined from the slope of the dynamic load-deflection curves in the 

region of large dynamic load i'!s12 kips).     These values of dynamic stiff- 

ness are considerably lower than the values that would be obtained from 

the region of lower dynamic load  (Figure 11).    Better agreement with the 

Dynaflect,  Road Rater, and CERF vibrators would be obtained for flexible 

pavements if the values of dynamic  stiffness measured by the WES l6-kip 

vibrator were obtained from that portion of the dynamic load-deflection 

curves where the dynamic load is comparable to the lower value produced 

by the other vibrators in question.     Another contribution to the dis- 

crepancy between the values of dynamic  stiffness measured by different 

vibrators at the same locations is due to the difference in operating 

frequency as indicated in Table 1. 

Actually, the dependence of the measured values of the dynamic 

stiffness on the magnitude of the dynamic load of the vibrator plays 

only a part in the explanation of the anomalous dynamic stiffness mea- 

surements.     This explanation of the anomalous values of the dynamic 

101 



stiffness measurements does not apply to strong rigid pavements whose 

dynamic load-deflection curves are essentially linear (Figure 12).    In 

this case the dynamic stiffness is essentially independent of the mag- 

nitude of the dynamic load, and the explanation of the higher values of 

dynamic stiffness measured by a vibrator with a small baseplate contact 

radius (about 1 in. in the case of Oynaflect) compared to those measured 

using a vibrator with a large baseplate contact radius  (about 9 in.   in 

the case of the WES l6-kip vibrator) depends on the two nonlinear ef- 

fects shown in Figure ka. and described in Section 3.8.2: 

a. The spring constant    k      is a function of   F     which has a 
local minimum value for a specific value of SF    . 

b. The parameter   kon    is not a linear function of baseplate 
contact radius for the case of a layered pavement structure 
which has a finite depth of influence, but is a very slowly 
increasing function of baseplate radius when the baseplate 
radius is larger than the first critical radius. 

U.2.5    CALCULATION OF AVERAGED 
PARAMETERS FOR A NON- 
HOMOGENEOUS PAVEMENT 

The static and dynamic stress and strain distribution in the 

pavement beneath the vibrator baseplate is three-dimensional in nature. 

The average values that are calculated in Equation 3.66 are based on an 

assumed one-dimensional distribution of strain in the pavement.     Some 

experimental evidence on the relatively large surface deflection of pave- 

ments associated with an applied static load su'^ests that the average 

values that appears in Equation 3.66 should more properly be volume aver- 

ages.    To account for the volume averages,  it is a simple matter to in- 

sert volume ratio factors for each layer thickness that appears in Equa- 

tion 3.66.    Each pavement layer is associated with a strain distribution 

which can be represented by a frustum of a cone.    The ratios of the 

volume of the frustum of the cone in each pavement layer to the volume 

of the complete frustum of the cone of strain in the pavement and sub- 

grade are the volume ratio factors that  should replace the one-dimensional 

average that appears in Equations  3.66-3.99«   The volume average tends to 

increase the effect of the subgrade as compared to that of the upper 
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pavement layers, and thereby gives a somewhat smaller net spring con- 

stant for a pavement than would be predicted by the one-dimensional 

average. 
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5.    SUMMARY, CONCLUSIONS. AND RECOMMENDATIONS 

5.1    SUMMARY 

A nonlinear mechanical model describing the dynamic properties of 

a pavement-vibrator system has been developed which describes the non- 

linear dynamic response of a pavement to a sinusoidal loading applied to 

the pavement surface.    Theoretical expressions are developed for the dy- 

namic stiftness of a pcvement measured by a mechanical vibrator which 

are expressed in terms of the static load, dynamic load, and vibrator 

baseplate size and in terms of the linear and nonlinear pavement param- 

eters.    The nonlinear mechanical model gives an analytical correlation 

among the values of the dynamic stiffness measured by different vibra- 

tors at the same pavement location.    The nonlinear parameters that 

characterize the dynamic pavement-restoring force are calculated in 

terms of the layered structure of the pavement-soil system and in terms 

of the finite depth of influence of the static load of the vibrator. 

The basic nonlinearity of the pavement system is used to determine the 

shear modulus and thickness of each pavement layer from the measured 

values of the dynamic stiffness for a series of baseplate sizes.    Ex- 

perimental tests were done to determine the validity of the theoretical 

pavement response model.    The experimental and theoretical results are 

in good agreement. 

5.2    CONCLUSIONS 

The nonlinear mechanical model developed in this report gives the 

following conclusions: 

ji.     Third- and fifth-order nonlinear terms in the displacement 
are required to describe the dynamic load-deflection response 
of actual pavement systems  (Section 3.2). 

b^.    The theoretical nonlinear oscillator model of pavement re- 
sponse to a dynamic loading shows that stiff pavements have 
a more linear dynamic load-deflection curve than flexible 
pavements  (Section 3.5.3). 

c_.    At specific critical frequencies the dynamic load-deflection 
curves become essentially linear at low values of the dynamic 
force (Section 3.5.1*). 
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d. An explanation of the nonlinear response of pavement and soil 
systems requires a departure from linear elasticity and a 
finite depth of influence for a static load applied to the 
surface of a pavement  (Section 3.6). 

e. The linear and nonlinear parameters of the nonlinear pavement- 
restoring force,    k00 ,    b , and    e  , can be described in 
terms of the elastic constants and thicknesses of the pave- 
ment layers.    In general,    b    and    e    are discontinuous func- 
tions of the vibrator baseplate radius and have the proper- 
ties    b < 0    and   e > 0  , while    k n    is a continuous and 
increasing function of the baseplate radius  (Section 3.7). 

£.    The anomalous values of the dynamic stiffness wherein a vi- 
brator with a small baseplate and a small static load can 
measure a larger dynamic stiffness value than a vibrator with 
a large baseplate and a large static load is explained in 
terms of the penetration of the finite depth of influence 
through the successive layers of the pavement system and in 
terms of the dependence of the dynamic stiffness on the 
static load (Section 3.8.2). 

£.    The measured value of the dynamic stiffness is not entirely 
a property of the pavement because it also depends on the 
size of the dynamic load,  static load, and baseplate radius 
of the vibrator that is used to make the measurement. 
(Sections 3.1* and 3.5). 

h. Critical values of the baseplate radius of the vibrator are 
expected to exist for which the dominant term of the static 
finite depth of influence passes through the various inter- 
faces of the pavement layers. Abrupt changes in the slope 
of the dynamic stiffness versus baseplate raruuc -function are 
expected to occur at the critical radii (Sections 3.7.7 and 
3.7.8). 

i_.    The variation of the dynamic stiffness with the vibrator 
baseplate radius is less rapid than is predicted by the 
linear elastic theory.    For rigid pavements the dynamic stiff- 
ness is roughly independent of baseplate radius when the base- 
plate radius is larger than the first critical radius   (Sec- 
tions 3.7.8 and 3.8.2). 

J_.    A determination of the elastic constants of each layer in a 
pavement system may be possible from dynamic stiffness mea- 
surements, but requires that the vibrator have the capability 
of varying the radius of its baseplate (Sections 3.7.7»   3.7.8, 
and 3.7.9). 

k.     The thickness of each pavement  Ityer can be calculated in 
terms of the critical radii  (Section 3.7.7). 

A comparison of the theoretical and experimental results for the 

105 



dynamic load-deflection curves and the dynamic stiffness yields the 

following conclusions: 

fi.    Some of the experimental dynamic load-deflection curves of 
pavements are nonlinear.    This is especially true of more 
flexible AC pavements.    The stiff er FCC pavements exhibit 
dynamic load-deflection curves that are only slightly non- 
linear  (Section k.l). 

b. Generally speaking, stiff pavements have dynamic load deflec- 
tion curves which are more linear than those corresponding to 
more flexible pavements (Section k.l.2 and Figure 11). 

£.    There is some evidence that the critical frequency exists and 
that it has a value of about 15 Hz for AC and FCC pavements 
(Sections 3.5.h, 3.5.5, and U.1.3 and Figures 11, Ik, and 15). 

d.    The value of the dynamic stiffness of a given pavement de- 
pends on the magnitude of the dynamic force static loai,  and 
baseplate size of the vibrator (Sections 3.k, 3.5,  3.8, U.1.2, 
l+.l.U,      1.5, Figures 16-19,  and Tables 2-U). 

e_. The measurement of dynamic load-deflection curves for a se- 
ries of baseplate sizes allows the critical radii to be de- 
termined. The shear nodulus and thickness of each pavement 
layer can be determine.1 in terms of the critical radii, the 
measured values of dynamic stiffness in the intervals between 
the critical radii, and the assumed value of Poisson's ratio 
for each pavement layer  (Sections 3.7-7,  3.7.9. f^id U.1.7). 

5.3    RECOMMENDATIONS 

The positive conclusions of this report regarding the usefulness 

of a mechanical vibrator for determining the strength of pavements and 

their subsurface structure suggest that a more detailed study of the 

measured dynamic stiffness function be made. 

5.3.1    DETERMINATION OF SUBSURFACE STRUCTURE 

In this report only one case of a rigid pavement and one case of 

a flexible pavement were used for the determination of the shear modulus 

and thickness of each pavement layer directly from the values of the dy- 

namic load-deflftion curves that were measured at the pavement surface 

using a mechanical vibrator with a variable baseplate size.    It is sug- 

gested that many different test sites of known subsurface structure be 

tested with the purpose of validating the method of subsurface structure 
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determination which employs a variable baseplate size that is presented 

in Sections 3.7.7 and 3.7.9« 

5.3.2 CORRELATION OF DYNAMIC STIFF- 
NESS VALUES MEASURED BY 
DIFFERENT VIBRATORS 

This report has determined the theoretical dependence of the dy- 

namic stiffness values on the size of the dynamic load, static load, and 

baseplate radius that are used during the measurement of the dynamic 

stiffness of a pavement. This theoretical dependence enables the values 

of the dynamic stiffness measured by different vibrators to be compared. 

A more detailed numerical study should be performed to validate the ca- 

pability of analytically correlating tne values of the dynamic stiffness 

measured by different vibrators at the same pavement location. 

5.3.3 SELECTION OF VIBRATOR 

The mechanical vibrators that are used to evaluate pavements non- 

destructively should be viewed as scientific instruments that are used 

to determine the nature and structure of pavement systems. Each pave- 

ment and its corresponding operational traffic will require its ovn 

specific vibrator characteristics if the nondestructive testing is to 

be accomplished optimally. From the conclusions of this report it fol- 

lows that optimal operating conditions can be obtained only if the vi- 

brator has the capability of: 

a. Applying a series of static loads. 

b. Generating a series of dynamic loads over a range of constant 
frequencies. 

c_. Operating in a frequency range which includes the critical 
frequency. 

d. Applying a series of baseplate sizes to the pavement. 

It is recommended that the construction of a new -vibrator should include 

the capability of easy changes of baseplate size and magnitude of the 

static and dynamic loads applied to the pavement surface. 
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